Fragen   
Sortierung: 
10.05.2018
 #2
avatar+14923 
0

Wasserbecken

Ein halbkugelförmiges Wasserbecken hat einen Durchmesser

von 10m. Es wird mit Wasser bis zu einer Höhe von 4,70m gefüllt. Es fließen 80 Liter pro Minute in das Becken.

a) Leiten Sie die Formel zur Berechnung des Volumens her.

b) Wie lange dauert es, das Becken bis zur Höhe von 4,70m zu füllen?

 

Guten Morgen Omi67!

 

Ich beginne die Lösung der Frage noch einmal. Ich werde die Lösung abschnittweise veröffentlichen, um damit das Malheur mit dem plötzlich leeren Monitor zu umgehen.

 

Antwort

a)

Ein Schnitt durch das halbkugelförmige Wasserbecken wird durch einen Halbkreis mit dem

Radius r = 5 in den Quadranten I und IV des rechtwinklichen Koordinatensystems dargestellt. Die Wasseroberfläche ist die vertikal liegende Kreissehne bei x = 0,3. Die Längeneinheit sei Meter (m).

Im Quadranten I ist vom Koordinatenursprung aus ein Radius einzuzeichnen. Vom Berührungspunkt

Radius / Halbkreis fällen wir das Lot auf die Abszissenachse.

Es entsteht das rechtwinkliche Dreieck mit der Hypotenuse r und den Katheten x und \(\rho\) .

\(r^2=x^2+\rho^2\\ \rho=\sqrt{r^2-x^2}\\ \color{blue} \rho=(r^2-x^2)^{\frac{1}{2}}\)

 

Ein Kreis mit dem Radius \(\rho\) hat die Fläche

\(F=\pi\rho^2\\ F(x)=\pi\times [(r^2-x^2)^{\frac{1}{2}}]^2\\ F(x)=\pi (r^2-x^2)\\ r=5\ eingesetzt\\ \color{blue}F(x)=\pi (25-x^2)\)

 

Das Volumen des eingefüllten Wassers ist

\(V=\int_{5-4,7}^{5} \! \ F(x) \, dx \\ V=\int_{0,3}^{5} \! \ \pi (25-x^2) \, dx \\ V=\pi \times\int_{0,3}^{5} \! \ (25-x^2) \, dx \\\)

\(V=\pi\times [25x-\frac{x^3}{3}]^5_{0,3}\)

\(V=\pi\times [(25\cdot5-\frac{5^3}{3})-(25\cdot0,3-\frac{0,3^3}{3})]\\ V=\pi\times (83,3\overline3-7,491)\\ V=\pi\times 75,842\)

\(\large V=238,266\ m^3\)

 

b)

\(Volumen=Volumenstrom\times Zeit\\ V=\dot V\times t\\ t=\frac{V}{\dot V}\)

 

\(V=238,266\ m^3\\ \dot V=80\frac{l}{min}\times\frac{m^3}{1000l}\\ \dot V = 0,08\frac{m^3}{min}\) 

 

Die zum Füllen des Beckens benötigte Zeit ist

\(t=\frac{V}{\dot V}\\ t=\frac{238,266\ m^3}{0,08\frac{m^3}{min}}\\ t=2978,321min\\ \)

\(\large t=49h\ 38min\ 19,3sec\)

 

LG von

laugh  !

10.05.2018
09.05.2018
 #1
avatar+26367 
+1

Folgendes Problem: Ich habe 20 Stück 100-seitige Würfel.

Wenn man mit einem Würfel eine 40 oder darunter würfelt, wird der Wurf als ,,Erfolg" gezählt.
Die Würfel sind natürlich nicht gezinkt.^^
Meine Frage ist jetzt:

Wie hoch ist die Wahrscheinlichkeit mindestens die Hälfte der 20 Würfel mit ,,Erfolg" zu werfen.

 

1.

Ich nehme an, das die Augenzahl der Würfel von 1 bis 100 gehen.

Die Frage kann auch so formuliert werden. Ich habe einen 100-seitigen Würfel und werfe 20 mal.

Die Wahrscheinlichkeit für einen Erfolg wären: 0.4

Die Wahrscheinlichkeit für einen Misserfolg wären: 0.6

\(\begin{array}{|rcll|} \hline P(X\ge10) &=& 1-P(X\le9) \\ &=& 1-\text{binomcdf}(20,0.4,9) \\ &=& 1-0.75533720332 \\ \mathbf{P(X\ge10)} & \mathbf{=} & \mathbf{0.24466279668} \\ \hline \end{array}\)

 

Die Wahrscheinlichkeit mindestens die Hälfte der 20 Würfel mit ,,Erfolg" zu werfen beträgt \(\approx24,47 \%\).

 

2.

Lieber wäre es mir jedoch, wenn mir jemand eine allgemeine Formel nennen könnte,
mit der ich mir berechnen kann wie oft beim einmaligen werfen der 20 Würfel:
19 Erfolge und 1 Misserfolg;
18 Erfolge und 2 Misserfolge,
17 Erfolge und 3 Misserfolge,....usw.
herauskommen könnten.

\(\begin{array}{|r|r|l|} \hline \text{Erfolge} & \text{Misserfolge} & \text{Wahrscheinlichkeit} \\ \hline 20 & 0 & \binom{20}{20}0.4^{20}0.6^{0} \\ \hline 19 & 1 & \binom{20}{19}0.4^{19}0.6^{1} \\ \hline 18 & 2 & \binom{20}{18}0.4^{18}0.6^{2} \\ \hline 17 & 3 & \binom{20}{17}0.4^{17}0.6^{3} \\ \hline 16 & 4 & \binom{20}{16}0.4^{16}0.6^{4} \\ \hline 15 & 5 & \binom{20}{15}0.4^{15}0.6^{5} \\ \hline 14 & 6 & \binom{20}{14}0.4^{14}0.6^{6} \\ \hline 13 & 7 & \binom{20}{13}0.4^{13}0.6^{7} \\ \hline 12 & 8 & \binom{20}{12}0.4^{12}0.6^{8} \\ \hline 11 & 9 & \binom{20}{11}0.4^{11}0.6^{9} \\ \hline 10 & 10& \binom{20}{10}0.4^{10}0.6^{10} \\ \hline 9 & 11 & \binom{20}{9}0.4^{9}0.6^{11} \\ \hline 8 & 12 & \binom{20}{8}0.4^{8}0.6^{12} \\ \hline 7 & 13 & \binom{20}{7}0.4^{7}0.6^{13} \\ \hline 6 & 14 & \binom{20}{6}0.4^{6}0.6^{14} \\ \hline 5 & 15 & \binom{20}{5}0.4^{5}0.6^{15} \\ \hline 4 & 16 & \binom{20}{4}0.4^{4}0.6^{16} \\ \hline 3 & 17 & \binom{20}{3}0.4^{3}0.6^{17} \\ \hline 2 & 18 & \binom{20}{2}0.4^{2}0.6^{18} \\ \hline 1 & 19 & \binom{20}{1}0.4^{1}0.6^{19} \\ \hline 0 & 20 & \binom{20}{0}0.4^{0}0.6^{20} \\ \hline \end{array}\)

 

 

laugh

09.05.2018
05.05.2018
03.05.2018
02.05.2018
28.04.2018
27.04.2018
26.04.2018
23.04.2018
11.04.2018
 #4
avatar+26367 
+1

 Integration- kann jemand helfen?

 

\(\text{$10 a$) in eine geostationäre Bahn ($ h_2 = 4,22\cdot 10^4\ km$ ) zu bringen;}\)

\(\begin{array}{|rcll|} \hline W = \displaystyle \int \limits_{h_1}^{h_2} F(s) ds &=& \displaystyle \int \limits_{h_1}^{h_2} \gamma \dfrac{mM}{s^2} ds \\\\ &=& \displaystyle \gamma mM \int \limits_{h_1}^{h_2} \dfrac{1}{s^2} ds \\\\ &=& \displaystyle \gamma mM \int \limits_{h_1}^{h_2} s^{-2} ds \\\\ &=& \gamma mM \left[ \dfrac{s^{-2+1}}{-2+1} \right]_{h_1}^{h_2} \\\\ &=& \gamma mM \left[ \dfrac{s^{-1}}{-1} \right]_{h_1}^{h_2} \\\\ &=& \gamma mM \left[ -s^{-1} \right]_{h_1}^{h_2} \\\\ &=& -\gamma mM \left[ s^{-1} \right]_{h_1}^{h_2} \\\\ &=& -\gamma mM \left[ \dfrac{1}{s} \right]_{h_1}^{h_2} \\\\ &=& -\gamma mM \left( \dfrac{1}{h_2} - \dfrac{1}{h_1} \right) \\\\ &=& -\gamma mM \left( \dfrac{h_1-h_2}{h_1h_2} \right) \\\\ \mathbf{W} & \mathbf{=} & \mathbf{ \gamma mM \left( \dfrac{h_2-h_1}{h_1h_2} \right) } \\ \hline \end{array}\)

 

\(\text{$W=\ ?$} \)

\(\begin{array}{|rcll|} \hline W &=& 6,67\cdot 10^{-11} \dfrac{m^3}{kg s^2} \cdot 10^3\ kg \cdot 5,97\cdot 10^{24}\ kg \left( \dfrac{4,22-0,6370}{4,22\cdot 0,6730} \right)\cdot \dfrac{1}{10^7\ m} \\\\ &=& 6,67\cdot 5,97 \cdot \left( \dfrac{4,22-0,6370}{4,22\cdot 0,6730} \right)\cdot 10^{-11}\cdot 10^3\cdot 10^{24}\cdot 10^{-7} \dfrac{m^3}{kg s^2}\ kg^2 \dfrac{1}{m} \\\\ &=& 39,8199 \cdot\left( \dfrac{3,5830}{2,68814} \right)\cdot 10^{9} \dfrac{kg\cdot m^2}{s^2} \\\\ &=& 39,8199 \cdot 1.33289188807\cdot 10^{9} \ Nm \\\\ &=& 53,0756216938\cdot 10^{9} \ Nm \\\\ \mathbf{W} & \mathbf{=} & \mathbf{5,30756216938\cdot 10^{10} \ Nm} \\ \hline \end{array}\)

 

 

\(\text{$10 b$) aus dem Anziehungsbereich der Erde "hinauszubefördern" ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{W} & \mathbf{=} & \mathbf{-\gamma mM \left( \dfrac{1}{h_2} - \dfrac{1}{h_1} \right) } \\\\ & = & \gamma mM \left( \dfrac{1}{h_1} - \dfrac{1}{h_2} \right) \quad & | \quad \dfrac{1}{h_2} = \dfrac{1}{\infty} = 0 \\\\ \mathbf{W} & \mathbf{=} & \mathbf{ \gamma mM \left( \dfrac{1}{h_1} \right) } \\ \hline \end{array}\)

 

\(\text{$W=\ ?$}\)

\(\begin{array}{|rcll|} \hline W &=& 6,67\cdot 10^{-11} \dfrac{m^3}{kg s^2} \cdot 10^3\ kg \cdot 5,97\cdot 10^{24}\ kg \left( \dfrac{1}{0,6730} \right)\cdot \dfrac{1}{10^7\ m} \\\\ &=& 6,67\cdot 5,97 \cdot \left( \dfrac{1}{0,6730} \right)\cdot 10^{-11}\cdot 10^3\cdot 10^{24}\cdot 10^{-7} \dfrac{m^3}{kg s^2}\ kg^2 \dfrac{1}{m} \\\\ &=& 39,8199 \cdot \left( \dfrac{1}{0,6730} \right)\cdot 10^{9} \dfrac{kg\cdot m^2}{s^2} \\\\ &=& \left( \dfrac{39,8199}{0,6730} \right)\cdot 10^{9} \ Nm \\\\ &=& 59,1677563150\cdot 10^{9} \ Nm \\\\ \mathbf{W} & \mathbf{=} & \mathbf{5,91677563150\cdot 10^{10} \ Nm} \\ \hline \end{array}\)

 

 

laugh

11.04.2018
10.04.2018

1 Benutzer online