Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
 
  Fragen   
Sortierung: 
 #6
avatar+26399 
+11

Ich habe diese Frage als Hausaufgabe bekommen und weiss nicht wie ich sie angehen soll?
Um das Becken eines Schwimmbades zu füllen, hat man drei Wasserhähne zur Verfügung.
Jeder Hahn ist verschieden stark. Und daher schneller oder weniger.
Wenn nur Hahn A und Hahn B offen sind dauert es 70 Minuten beziehungsweise 1 Sunde und 10 Minuten.
Wenn nur Hahn A und Hahn C offen sind dauert es 50 Minuten.
Wenn nur Hahn B und Hahn C offen sind dauert es 56 Minuten.
Wie lange dauert es bis das Becken voll ist wenn man alle Hähne aufdreht?

 

Hahn A:  1A in der Einheit [BeckenMin.] Hahn B:  1B in der Einheit [BeckenMin.] Hahn C:  1C in der Einheit [BeckenMin.] 

 

(1)1A+1B=1 Becken70 Min.(2)1A+1C=1 Becken50 Min.(3)1B+1C=1 Becken56 Min.(1)+(2)+(3):1A+1B+1A+1C+1B+1C=1 Becken70 Min.+1 Becken50 Min.++1 Becken56 Min.2(1A+1B+1C)=(170+150+156)1 BeckenMin.2(1A+1B+1C)=0.052142857141 BeckenMin.1A+1B+1C=0.026071428571 BeckenMin.1A+1B+1C=1 Becken38.3561643836 Min.

 

Wenn man alle Hähne aufdreht werden, dauert es 38.3561643836 Min.oder 38 Min. 21.4 Sekunden 

 

laugh

19.11.2018
18.11.2018
 #2
avatar
0
18.11.2018
17.11.2018
16.11.2018
 #2
avatar
+1

Mein Lösungsansatz sieht wie folgt aus:

 

In der Aufgabe werden die jeweiligen Zeiten gegeben bis das Schwimmbecken voll ist. Voll meint zu 100% gefüllt. Daraus ergibt sich folgendes Gleichungssystem:

 

 

   (a+b) · 70 = 100%

   (a+c) · 50 = 100%

   (b+c) · 56 = 100%

 

 

Die Klammern ausmultipliziert, die jeweils fehlende Variable -mit dem Faktor Null multipliziert- ergänzt und die 100% durch den Faktor 1 ersetzt, ergibt:

 

   70a + 70b + 0c = 1

   50a + 0b + 50c = 1

   0a + 56b + 56c = 1

 

Das Gleichungssystem gilt es zu lösen. Im Anschluss muss man noch die vierte Bedingung aufstellen:

 

   (a+b+c) · t = 1

 

 

Das Gleichungssystem habe ich im Internet mit Hilfe des Rechners zum Lösen linearer Gleichungssysteme vereinfachen und lösen gelassen. Den Rechner findest du hier: https://www.arndt-bruenner.de/mathe/scripts/gleichungssysteme.htm

 

 

Hier die Lösung des Internetrechners:

 

Die Gleichungen werden so umgeformt und untereinandergeschrieben, dass alle gleichen Variablen auf der linken Seite der Gleichung untereinander stehen und die konstanten Zahlen auf der rechten Seite.

 

       70·a  +  70·b                 =     1

       50·a                 +  50·c  =     1

                    56·b    +  56·c  =     1

 

Durch Division der 1. Gleichung durch 70 wird der Faktor vor a eliminiert:

 

                                          1  

          a  +     b           =     ——

                                          70  

 

       50·a           +  50·c  =     1

 

                56·b  +  56·c  =     1

 

 

 

Mit der 1. Gleichung wird in allen anderen Gleichung der Summand mit a eliminiert. Zur 2. Gleichung wird das -50fache der 1. Gleichung addiert:

 

 

                                          1  

         a  +     b           =     ——

                                         70  

 

                                              2  

             - 50·b  +  50·c  =      —

                                              7  

 

               56·b  +  56·c  =     1

 

 

 

Durch Division der 2. Gleichung durch -50 wird der Faktor vor b eliminiert:

 

 

                                          1   

         a  +     b           =      ——

                                          70  

 

                                           1   

                  b  -     c  =   - ———

                                         175  

 

               56·b  +  56·c  =      1

 

 

 

Mit der 2. Gleichung wird in allen anderen Gleichung der Summand mit b eliminiert. Zur 1. Gleichung wird das -1fache der 2. Gleichung addiert:

 

 

                                           1   

         a           +     c  =      ——

                                          50  

 

                                          1   

                  b  -     c  =   - ———

                                         175  

 

               56·b  +  56·c  =      1

 

 

 

Zur 3. Gleichung wird das -56fache der 2. Gleichung addiert:

 

 

                                           1   

         a          +      c  =      ——

                                          50  

 

                                          1   

                 b  -      c  =   - ———

                                         175  

 

                                           33  

                       112·c  =      ——

                                           25  

 

 

 

Durch Division der 3. Gleichung durch 112 wird der Faktor vor c eliminiert:

 

 

                                         1   

         a          +    c  =      ——

                                        50   

 

                                          1   

                 b  -    c  =    - ———

                                        175  

 

                                        33   

                         c  =     ————

                                     2800  

 

 

 

Mit der 3. Gleichung wird in allen anderen Gleichung der Summand mit c eliminiert. Zur 1. Gleichung wird das -1fache der 3. Gleichung addiert:

 

 

                                        23   

         a                  =     ————

                                      2800  

 

                                          1   

                 b  -    c  =    - ———

                                        175  

 

                                       33   

                         c  =     ————

                                     2800  

 

 

 

Zur 2. Gleichung wird die 3. Gleichung addiert:

 

 

                                       23   

         a                  =     ————

                                      2800  

 

                                       17   

                 b          =     ————

                                     2800  

 

                                       33   

                         c  =     ————

                                     2800  

 

Soweit die Lösung des Internetrechners.

 

Nun geht es mit den ermittelten Werten für a, b und c in die vierte Bedingung:

 

   (a+b+c) · t = 1      geteilt durch (a+b+c) ergibt

 

 

          1

   t = --------

       (a+b+c)

 

                                                            2800

Es ergibt sich somit als Lösung für t = -----

                                                             73

 

Das sind ungefähr 38min und 21s.

16.11.2018
15.11.2018
 #1
avatar+15125 
0

Um das Becken eines Schwimmbades zu füllen, hat man drei Wasserhähne zur Verfügung. Jeder Hahn ist verschieden stark.

Wenn nur Hahn A und Hahn B offen sind dauert es 70 Minuten.

Wenn nur Hahn A und Hahn C offen sind dauert es 50 Minuten.

Wenn nur Hahn B und Hahn C offen sind dauert es 56 Minuten.

 

Wie lange dauert es bis das Becken voll ist, wenn man alle Hähne aufdreht?

 

Hallo Gast!

 

Q:VolumenstromV:Volument:ZeitV=Q×t

 

 

V=(QA+QB)×70V=(QA+QC)×50V=(QB+QC)×56      ( ' steht für min, '' steht für min² )

 

substituieren:QA=aQB=bQC=c

 

 

V=70a+70bV=50a+50cV=56b+56c        

 

 

a=V70b70a=V50c50          

 

V70b70=V50c5050V3500

 

 

 

 

 

 

 

Das Becken ist nach 38 Minuten und 21,37 Sekunden gefüllt, wenn alle drei Hähne geöffnet sind.

 

UFF!

Gruß

laugh  !

15.11.2018
14.11.2018
13.11.2018
08.11.2018
 #1
avatar+26399 
+11

Wie kann ich die Formel:

durch völlstandige Induktion beweisen ?
für alle :

 

 

 

 

 

 

 

 

laugh

08.11.2018
06.11.2018
29.10.2018

2 Benutzer online

avatar