+0  
 
+1
105
6
avatar

Ich habe diese Frage als Hausaufgabe bekommen und weiss nicht wie ich sie angehen soll?

 

Um das Becken eines Schwimmbades zu füllen, hat man drei Wasserhähne zur Verfügung. Jeder Hahn ist verschieden stark. Und daher schneller oder weniger.

Wenn nur Hahn A und Hahn B offen sind dauert es 70 Minuten beziehungsweise 1 Sunde und 10 Minuten.

Wenn nur Hahn A und Hahn C offen sind dauert es 50 Minuten.

Wenn nur Hahn B und Hahn C offen sind dauert es 56 Minuten.

 

Wie lange dauert es bis das Becken voll ist wenn man alle Hähne aufdreht?

 

Wäre dankbar für die Lösung und den Lösungsweg

Guest 14.11.2018

Beste Antwort 

 #2
avatar
+1

Mein Lösungsansatz sieht wie folgt aus:

 

In der Aufgabe werden die jeweiligen Zeiten gegeben bis das Schwimmbecken voll ist. Voll meint zu 100% gefüllt. Daraus ergibt sich folgendes Gleichungssystem:

 

 

   (a+b) · 70 = 100%

   (a+c) · 50 = 100%

   (b+c) · 56 = 100%

 

 

Die Klammern ausmultipliziert, die jeweils fehlende Variable -mit dem Faktor Null multipliziert- ergänzt und die 100% durch den Faktor 1 ersetzt, ergibt:

 

   70a + 70b + 0c = 1

   50a + 0b + 50c = 1

   0a + 56b + 56c = 1

 

Das Gleichungssystem gilt es zu lösen. Im Anschluss muss man noch die vierte Bedingung aufstellen:

 

   (a+b+c) · t = 1

 

 

Das Gleichungssystem habe ich im Internet mit Hilfe des Rechners zum Lösen linearer Gleichungssysteme vereinfachen und lösen gelassen. Den Rechner findest du hier: https://www.arndt-bruenner.de/mathe/scripts/gleichungssysteme.htm

 

 

Hier die Lösung des Internetrechners:

 

Die Gleichungen werden so umgeformt und untereinandergeschrieben, dass alle gleichen Variablen auf der linken Seite der Gleichung untereinander stehen und die konstanten Zahlen auf der rechten Seite.

 

       70·a  +  70·b                 =     1

       50·a                 +  50·c  =     1

                    56·b    +  56·c  =     1

 

Durch Division der 1. Gleichung durch 70 wird der Faktor vor a eliminiert:

 

                                          1  

          a  +     b           =     ——

                                          70  

 

       50·a           +  50·c  =     1

 

                56·b  +  56·c  =     1

 

 

 

Mit der 1. Gleichung wird in allen anderen Gleichung der Summand mit a eliminiert. Zur 2. Gleichung wird das -50fache der 1. Gleichung addiert:

 

 

                                          1  

         a  +     b           =     ——

                                         70  

 

                                              2  

             - 50·b  +  50·c  =      —

                                              7  

 

               56·b  +  56·c  =     1

 

 

 

Durch Division der 2. Gleichung durch -50 wird der Faktor vor b eliminiert:

 

 

                                          1   

         a  +     b           =      ——

                                          70  

 

                                           1   

                  b  -     c  =   - ———

                                         175  

 

               56·b  +  56·c  =      1

 

 

 

Mit der 2. Gleichung wird in allen anderen Gleichung der Summand mit b eliminiert. Zur 1. Gleichung wird das -1fache der 2. Gleichung addiert:

 

 

                                           1   

         a           +     c  =      ——

                                          50  

 

                                          1   

                  b  -     c  =   - ———

                                         175  

 

               56·b  +  56·c  =      1

 

 

 

Zur 3. Gleichung wird das -56fache der 2. Gleichung addiert:

 

 

                                           1   

         a          +      c  =      ——

                                          50  

 

                                          1   

                 b  -      c  =   - ———

                                         175  

 

                                           33  

                       112·c  =      ——

                                           25  

 

 

 

Durch Division der 3. Gleichung durch 112 wird der Faktor vor c eliminiert:

 

 

                                         1   

         a          +    c  =      ——

                                        50   

 

                                          1   

                 b  -    c  =    - ———

                                        175  

 

                                        33   

                         c  =     ————

                                     2800  

 

 

 

Mit der 3. Gleichung wird in allen anderen Gleichung der Summand mit c eliminiert. Zur 1. Gleichung wird das -1fache der 3. Gleichung addiert:

 

 

                                        23   

         a                  =     ————

                                      2800  

 

                                          1   

                 b  -    c  =    - ———

                                        175  

 

                                       33   

                         c  =     ————

                                     2800  

 

 

 

Zur 2. Gleichung wird die 3. Gleichung addiert:

 

 

                                       23   

         a                  =     ————

                                      2800  

 

                                       17   

                 b          =     ————

                                     2800  

 

                                       33   

                         c  =     ————

                                     2800  

 

Soweit die Lösung des Internetrechners.

 

Nun geht es mit den ermittelten Werten für a, b und c in die vierte Bedingung:

 

   (a+b+c) · t = 1      geteilt durch (a+b+c) ergibt

 

 

          1

   t = --------

       (a+b+c)

 

                                                            2800

Es ergibt sich somit als Lösung für t = -----

                                                             73

 

Das sind ungefähr 38min und 21s.

Gast 16.11.2018
 #1
avatar+7603 
0

Um das Becken eines Schwimmbades zu füllen, hat man drei Wasserhähne zur Verfügung. Jeder Hahn ist verschieden stark.

Wenn nur Hahn A und Hahn B offen sind dauert es 70 Minuten.

Wenn nur Hahn A und Hahn C offen sind dauert es 50 Minuten.

Wenn nur Hahn B und Hahn C offen sind dauert es 56 Minuten.

 

Wie lange dauert es bis das Becken voll ist, wenn man alle Hähne aufdreht?

 

Hallo Gast!

 

\(Q: Volumenstrom\\ V: Volumen\\ t: Zeit\\ V=Q\times t\)

 

 

\(V=(Q_A+Q_B) \times 70'\\ V=(Q_A+Q_C)\times 50'\\ V=(Q_B+Q_C) \times 56'\)      ( ' steht für min, '' steht für min² )

 

\(substituieren:\\ Q_A=a\\ Q_B=b\\ Q_C=c\)

 

 

\(V=70' a+70'b\\ V=50'a+50'c\\ V=56'b+56'c\)        

 

 

\(a=\frac{V-70'b}{70'}\\ a=\frac{V-50'c}{50'} \)          

 

\(\frac{V-70'b}{70'}=\frac{V-50'c}{50'}\\ 50'V-3500''b=70'V-3500''c\\ b=\frac{50'V-70'V+3500''c}{3500''}\\ V=56'b+56'c\\ b=\frac{V-56'c}{56'}\)

 

\(\frac{50'V-70'V+3500''c}{3500''}=\frac{V-56'c}{56'}\\ 2800''V-3920''V+196000'c=3500''V-196000'c\\ 392000'c=4620''V\\ \color{blue} c=\frac{V}{84,\overline{84}\ '}=Q_c\)

 

\(b=\frac{V-56'c}{56'}\\ b=\frac{V-56'\cdot \frac{V}{84,\overline{84}'}}{56'}\\ b=\frac{84,\overline{84}'V-56'V}{84,\overline{84}'\cdot56'}\\ b=\frac{(84,\overline{84}'-56')V}{84,\overline{84}'\cdot56'}\)

\(\color{blue}b=\frac{V}{164,705882353'}=Q_b\)

 

 

\(a=\frac{V-50'c}{50'} \\ c=\frac{V}{84,\overline{84}\ '}\\ a=\frac{V-50'\cdot \frac{V}{84,\overline{84}\ '}}{50'} \\ a=\frac{84,\overline{84}\ 'V-50'V}{84,\overline{84}\ '\cdot \ 50'}=\frac{34,\overline{84}\ 'V}{4242,\overline{42}\ ''}\)

\(a=\frac{V}{121,73913'}=Q_a\)

 

\(\color{blue}V=(Q_a+Q_b+Q_c)\times t\\ t=\frac{V}{Q_a+Q_b+Q_c}=\frac{V}{V\times (\frac{1}{121,73913'}+\frac{1}{164,705882353'}+\frac{1}{84,\overline{84}\ '})}=38.3562'\)

 

\(t=38,3562 '=38\ min\ 21,37\ sec\)

 

Das Becken ist nach 38 Minuten und 21,37 Sekunden gefüllt, wenn alle drei Hähne geöffnet sind.

 

UFF!

Gruß

laugh  !

asinus  15.11.2018
bearbeitet von asinus  15.11.2018
bearbeitet von asinus  15.11.2018
bearbeitet von asinus  16.11.2018
bearbeitet von asinus  16.11.2018
bearbeitet von asinus  16.11.2018
bearbeitet von asinus  16.11.2018
bearbeitet von asinus  16.11.2018
bearbeitet von asinus  16.11.2018
bearbeitet von asinus  17.11.2018
 #2
avatar
+1
Beste Antwort

Mein Lösungsansatz sieht wie folgt aus:

 

In der Aufgabe werden die jeweiligen Zeiten gegeben bis das Schwimmbecken voll ist. Voll meint zu 100% gefüllt. Daraus ergibt sich folgendes Gleichungssystem:

 

 

   (a+b) · 70 = 100%

   (a+c) · 50 = 100%

   (b+c) · 56 = 100%

 

 

Die Klammern ausmultipliziert, die jeweils fehlende Variable -mit dem Faktor Null multipliziert- ergänzt und die 100% durch den Faktor 1 ersetzt, ergibt:

 

   70a + 70b + 0c = 1

   50a + 0b + 50c = 1

   0a + 56b + 56c = 1

 

Das Gleichungssystem gilt es zu lösen. Im Anschluss muss man noch die vierte Bedingung aufstellen:

 

   (a+b+c) · t = 1

 

 

Das Gleichungssystem habe ich im Internet mit Hilfe des Rechners zum Lösen linearer Gleichungssysteme vereinfachen und lösen gelassen. Den Rechner findest du hier: https://www.arndt-bruenner.de/mathe/scripts/gleichungssysteme.htm

 

 

Hier die Lösung des Internetrechners:

 

Die Gleichungen werden so umgeformt und untereinandergeschrieben, dass alle gleichen Variablen auf der linken Seite der Gleichung untereinander stehen und die konstanten Zahlen auf der rechten Seite.

 

       70·a  +  70·b                 =     1

       50·a                 +  50·c  =     1

                    56·b    +  56·c  =     1

 

Durch Division der 1. Gleichung durch 70 wird der Faktor vor a eliminiert:

 

                                          1  

          a  +     b           =     ——

                                          70  

 

       50·a           +  50·c  =     1

 

                56·b  +  56·c  =     1

 

 

 

Mit der 1. Gleichung wird in allen anderen Gleichung der Summand mit a eliminiert. Zur 2. Gleichung wird das -50fache der 1. Gleichung addiert:

 

 

                                          1  

         a  +     b           =     ——

                                         70  

 

                                              2  

             - 50·b  +  50·c  =      —

                                              7  

 

               56·b  +  56·c  =     1

 

 

 

Durch Division der 2. Gleichung durch -50 wird der Faktor vor b eliminiert:

 

 

                                          1   

         a  +     b           =      ——

                                          70  

 

                                           1   

                  b  -     c  =   - ———

                                         175  

 

               56·b  +  56·c  =      1

 

 

 

Mit der 2. Gleichung wird in allen anderen Gleichung der Summand mit b eliminiert. Zur 1. Gleichung wird das -1fache der 2. Gleichung addiert:

 

 

                                           1   

         a           +     c  =      ——

                                          50  

 

                                          1   

                  b  -     c  =   - ———

                                         175  

 

               56·b  +  56·c  =      1

 

 

 

Zur 3. Gleichung wird das -56fache der 2. Gleichung addiert:

 

 

                                           1   

         a          +      c  =      ——

                                          50  

 

                                          1   

                 b  -      c  =   - ———

                                         175  

 

                                           33  

                       112·c  =      ——

                                           25  

 

 

 

Durch Division der 3. Gleichung durch 112 wird der Faktor vor c eliminiert:

 

 

                                         1   

         a          +    c  =      ——

                                        50   

 

                                          1   

                 b  -    c  =    - ———

                                        175  

 

                                        33   

                         c  =     ————

                                     2800  

 

 

 

Mit der 3. Gleichung wird in allen anderen Gleichung der Summand mit c eliminiert. Zur 1. Gleichung wird das -1fache der 3. Gleichung addiert:

 

 

                                        23   

         a                  =     ————

                                      2800  

 

                                          1   

                 b  -    c  =    - ———

                                        175  

 

                                       33   

                         c  =     ————

                                     2800  

 

 

 

Zur 2. Gleichung wird die 3. Gleichung addiert:

 

 

                                       23   

         a                  =     ————

                                      2800  

 

                                       17   

                 b          =     ————

                                     2800  

 

                                       33   

                         c  =     ————

                                     2800  

 

Soweit die Lösung des Internetrechners.

 

Nun geht es mit den ermittelten Werten für a, b und c in die vierte Bedingung:

 

   (a+b+c) · t = 1      geteilt durch (a+b+c) ergibt

 

 

          1

   t = --------

       (a+b+c)

 

                                                            2800

Es ergibt sich somit als Lösung für t = -----

                                                             73

 

Das sind ungefähr 38min und 21s.

Gast 16.11.2018
 #5
avatar+7603 
0

Das ist genial gelöst und vorbildlich erläutert.

Danke, Omi67!

laugh  !

asinus  17.11.2018
bearbeitet von asinus  17.11.2018
 #3
avatar+9722 
+2

Ich habe noch einen anderen Lösunsansatz:

laugh

Omi67  16.11.2018
bearbeitet von Omi67  16.11.2018
 #4
avatar+7603 
0

Vielen Dank! Das hilft mir sehr dabei, meinen Fehler zu finden.

laugh  !

asinus  16.11.2018
 #6
avatar+20528 
+7

Ich habe diese Frage als Hausaufgabe bekommen und weiss nicht wie ich sie angehen soll?
Um das Becken eines Schwimmbades zu füllen, hat man drei Wasserhähne zur Verfügung.
Jeder Hahn ist verschieden stark. Und daher schneller oder weniger.
Wenn nur Hahn A und Hahn B offen sind dauert es 70 Minuten beziehungsweise 1 Sunde und 10 Minuten.
Wenn nur Hahn A und Hahn C offen sind dauert es 50 Minuten.
Wenn nur Hahn B und Hahn C offen sind dauert es 56 Minuten.
Wie lange dauert es bis das Becken voll ist wenn man alle Hähne aufdreht?

 

\(\text{Hahn A: $~\dfrac{1}{A}$ in der Einheit $\left[ \dfrac{\text{Becken}} {\text{Min.}} \right] $ } \\ \text{Hahn B: $~\dfrac{1}{B}$ in der Einheit $\left[ \dfrac{\text{Becken}}{\text{Min.}} \right] $ } \\ \text{Hahn C: $~\dfrac{1}{C}$ in der Einheit $\left[ \dfrac{\text{Becken}}{\text{Min.}} \right] $ }\)

 

\(\small{ \begin{array}{|lrcll|} \hline (1) & \dfrac{1}{A} + \dfrac{1}{B} &=& \dfrac{1~\text{Becken}} {70~ \text{Min.}} \\ (2) & \dfrac{1}{A} + \dfrac{1}{C} &=& \dfrac{1~\text{Becken}} {50~ \text{Min.}} \\ (3) & \dfrac{1}{B} + \dfrac{1}{C} &=& \dfrac{1~\text{Becken}} {56~ \text{Min.}} \\ \hline (1)+(2)+(3): & \dfrac{1}{A} + \dfrac{1}{B} +\dfrac{1}{A} + \dfrac{1}{C} + \dfrac{1}{B} + \dfrac{1}{C} &=& \dfrac{1~\text{Becken}} {70~ \text{Min.}} +\dfrac{1~\text{Becken}} {50~ \text{Min.}}++\dfrac{1~\text{Becken}} {56~ \text{Min.}} \\\\ & 2\cdot \left( \dfrac{1}{A} + \dfrac{1}{B} + \dfrac{1}{C} \right) &=& \left( \dfrac{1} {70} +\dfrac{1} {50}+\dfrac{1} {56} \right) \dfrac{1~\text{Becken}} {\text{Min.}} \\\\ & 2\cdot \left( \dfrac{1}{A} + \dfrac{1}{B} + \dfrac{1}{C} \right) &=& 0.05214285714 \dfrac{1~\text{Becken}} {\text{Min.}} \\\\ & \dfrac{1}{A} + \dfrac{1}{B} + \dfrac{1}{C} &=& 0.02607142857 \dfrac{1~\text{Becken}} {\text{Min.}} \\\\ & \mathbf{\dfrac{1}{A} + \dfrac{1}{B} + \dfrac{1}{C}} & \mathbf{=} & \mathbf{ \dfrac{1~\text{Becken}} {38.3561643836~\text{Min.}} } \\ \hline \end{array} }\)

 

\(\text{Wenn man alle Hähne aufdreht werden, dauert es $38.3561643836~\text{Min.}\\$oder $ \mathbf{38~\text{Min.}~ 21.4~ \text{Sekunden}}$ }\)

 

laugh

heureka  19.11.2018

11 Benutzer online

avatar

Datenschutzerklärung

Wir verwenden Cookies, um Inhalte und Anzeigen bereitzustellen und die Zugriffe auf unsere Website anonymisiert zu analysieren.

Bitte klicken Sie auf "Cookies und Datenschutzerklärung akzeptieren", wenn Sie mit dem Setzen der in unserer Datenschutzerklärung aufgeführten Cookies einverstanden sind und der Drittanbieter Google Adsense auf dieser Webseite nicht-personalisierte Anzeigen für Sie einbinden darf. Nach Einwilligung erhält der Anbieter Google Inc. Informationen zu Ihrer Verwendung unserer Webseite.

Davon unberührt bleiben solche Cookies, die nicht einer Einwilligung bedürfen, weil diese zwingend für das Funktionieren dieser Webseite notwendig sind.

Weitere Informationen: Cookie Bestimmungen und Datenschutzerklärung.