Fragen   
Sortierung: 
 #3
avatar
0
03.02.2016
 #2
avatar
0
03.02.2016
02.02.2016
 #6
avatar+26387 
+5

Unten, an einer Wand, liegt ein Würfel mit 1m Kantenlänge.

Nun soll eine 10m lange Leiter so an die Wand gestellt werden, dass sie gerade an der Würfelkante vorbeigeht, also die max. Höhe erreicht wird.

Wie weit ist das Fussteil der Leiter dann von der Wand entfernt?

 

Wir definieren:

\(\small{ \begin{array}{rcll} a &=& \text{ Kantenlänge des Würfels } = 1\ m \\ L &=& \text{ Länge der Leiter } = 10\ m \\ \\ x &=& \text{ Entfernung des Fußteils der Leiter von der Wand } \qquad x\ge a\ ! \\ y &=& \text{ Die Anlegehöhe an der Wand } \\ \end{array} }\)

 

Ich habe meine beiden quadratischen Gleichungen für k und x zusammengefaßt und erhalte:

\(\small{ \begin{array}{lrcll} & 2\cdot x_{1,2} &=& a + \sqrt{a^2+L^2} \pm \sqrt{ \left(a- \sqrt{a^2+L^2} \right)^2-(2a)^2 } \\ a=1: & 2\cdot x_{1,2} &=& 1 + \sqrt{1+L^2} \pm \sqrt{ \left(1- \sqrt{1+L^2} \right)^2-4 } \\\\ & 2\cdot x_{3,4} &=& a - \sqrt{a^2+L^2} \pm \sqrt{ \left(a+ \sqrt{a^2+L^2} \right)^2-(2a)^2 } \\ a=1: & 2\cdot x_{3,4} &=& 1 - \sqrt{1+L^2} \pm \sqrt{ \left(1+ \sqrt{1+L^2} \right)^2-4 } \\ \end{array} }\)

 

Für \(a = 1 ~ \text{ und } ~ L=10\) erhalten wir für die vier Lösungen von \(x\):

\(\small{ \begin{array}{rcll} x_1 &=& \frac12\cdot \left[ 1 + \sqrt{1+L^2} + \sqrt{ \left(1- \sqrt{1+L^2} \right)^2-4 } \right] = \frac12\cdot \left[ 1 + \sqrt{101} + \sqrt{ (1-\sqrt{101})^2 - 4 }\right] = 9.93799368936\\ x_2 &=& \frac12\cdot \left[ 1 + \sqrt{1+L^2} - \sqrt{ \left(1- \sqrt{1+L^2} \right)^2-4 } \right] = \frac12\cdot \left[ 1 + \sqrt{101} - \sqrt{ (1-\sqrt{101})^2 - 4 }\right] = 1.11188193176\\ x_3 &=& \frac12\cdot \left[ 1 - \sqrt{1+L^2} + \sqrt{ \left(1+ \sqrt{1+L^2} \right)^2-4 } \right] = \frac12\cdot \left[ 1 - \sqrt{101} + \sqrt{ (1+\sqrt{101})^2 - 4 }\right] = 0.90874766162\\ x_4 &=& \frac12\cdot \left[ 1 - \sqrt{1+L^2} - \sqrt{ \left(1+ \sqrt{1+L^2} \right)^2-4 } \right] = \frac12\cdot \left[ 1 - \sqrt{101} - \sqrt{ (1+\sqrt{101})^2 - 4 }\right] = -9.95862328274\\ \end{array} }\)

 

Unsere Bedingung für x lautet aber, x muss größer oder gleich a bzw. 1 sein, somit fallen \(x_3\) und \(x_4\) als Lösungen raus.

 

laugh

02.02.2016
 #5
avatar+26387 
+5

Unten, an einer Wand, liegt ein Würfel mit 1m Kantenlänge.

Nun soll eine 10m lange Leiter so an die Wand gestellt werden, dass sie gerade an der Würfelkante vorbeigeht, also die max. Höhe erreicht wird.

Wie weit ist das Fussteil der Leiter dann von der Wand entfernt?

 

Wir definieren:

\(\small{ \begin{array}{rcll} a &=& \text{ Kantenlänge des Würfels } = 1\ m \\ L &=& \text{ Länge der Leiter } = 10\ m \\ \\ x &=& \text{ Entfernung des Fußteils der Leiter von der Wand } \qquad x\ge a\ ! \\ y &=& \text{ Die Anlegehöhe an der Wand } \\ \end{array} }\)

 

I. Strahlensatz:

\(\begin{array}{rcll} \frac{x-a}{a} &=& \frac{x}{y} \qquad & | \qquad \cdot y\\ \frac{y(x-a)}{a} &=& x \qquad & | \qquad \cdot a\\ y(x-a) &=& ax \\ yx-ay &=& ax \qquad & | \qquad +ay\\ yx &=& ax+ay\\ yx &=& a(x+y)\\ \end{array}\)

 

\(\boxed{~ \begin{array}{rcll} xy = a(x+y) = k \qquad \Rightarrow \qquad xy = k \qquad (x+y) = \frac{k}{a}\\ \end{array} ~} \)

 

II. Pythagoras:

\(\begin{array}{rcll} x^2+y^2 &=& L^2 \qquad & | \qquad x^2+y^2 = (x+y)^2 -2xy\\ (x+y)^2 -2xy &=& L^2 \qquad & | \qquad xy = k \qquad (x+y) = \frac{k}{a}\\ (\frac{k}{a})^2 -2k &=& L^2\\ \frac{k^2}{a^2} -2k &=& L^2 \qquad & | \qquad \cdot a^2\\ k^2 -2a^2k &=& a^2L^2 \\ k^2 -2a^2k - a^2L^2 &=& 0\\ \end{array}\)

 

Wir rechnen jetzt k aus:

\(\boxed{~ \begin{array}{rcll} Ak^2+Bk+C &=& 0 \\ k_{1,2} &=& \frac{ -B \pm \sqrt{B^2-4AC} } { 2A} \end{array} ~}\\ \)

\(\begin{array}{rcll} k^2 -2a^2k - a^2L^2 &=& 0\qquad A= 1 \qquad B = -2a^2 \qquad C=-a^2L^2 \\ k_{1,2} &=& \frac{ 2a^2 \pm \sqrt{(-2a^2)^2-4\cdot 1 \cdot (-a^2L^2)} } { 2\cdot 1} \\ k_{1,2} &=& \frac{ 2a^2 \pm \sqrt{4a^4+ 4\cdot a^2L^2 } } { 2 } \\ k_{1,2} &=& \frac{ 2a^2 \pm \sqrt{4a^2(a^2 + L^2) } } { 2 } \\ k_{1,2} &=& \frac{ 2a^2 \pm 2a\cdot \sqrt{a^2+ L^2} } { 2 } \\ k_{1,2} &=& a^2 \pm a\cdot \sqrt{a^2+ L^2} \\ \end{array}\)

 

\(\begin{array}{rcll} a= 1 \qquad L = 10\\ k_{1,2} &=& 1^2 \pm 1\cdot \sqrt{1+ L^2} \\ \mathbf{k_{1,2} }& \mathbf{=} & \mathbf{1 \pm \sqrt{1+ L^2} }\\ k_{1,2} &=& 1^2 \pm 1\cdot \sqrt{1^2+ 10^2} \\ k_{1,2} &=& 1 \pm \sqrt{1+ 10^2} \\ k_{1,2} &=& 1 \pm \sqrt{101} \\\\ k_{1} &=& 1 + \sqrt{101} \\ k_{1} &=& 11.0498756211\\\\ k_{2} &=& 1 - \sqrt{101} \\ k_{2} &=& -9.04987562112 \end{array}\)

 

Wir rechnen jetzt x und y aus:

\(\begin{array}{lrcll} (1)& xy &=& k \\ & y &=& \frac{k}{x} \\\\ (2)& x+y &=& \frac{k}{a} \\ & x+\frac{k}{x} &=& \frac{k}{a} \qquad & | \qquad \cdot x\\ & x^2+ k &=& \frac{k}{a} \cdot x\\ & x^2 - \frac{k}{a}\cdot x + k &=& 0\\ \end{array}\)

 

 

\(\boxed{~ \begin{array}{rcll} Ax^2+Bx+C &=& 0 \\ x_{1,2} &=& \frac{ -B \pm \sqrt{B^2-4AC} } { 2A} \end{array} ~}\)

 

\(\begin{array}{rcll} x^2 - \frac{k}{a}\cdot x + k &=& 0 \qquad A= 1 \qquad B = -\frac{k}{a} \qquad C=k \\ x_{1,2} &=& \frac{ \frac{k}{a} \pm \sqrt{(-\frac{k}{a})^2-4\cdot 1 \cdot k} } { 2\cdot 1} \\ x_{1,2} &=& \frac{ \frac{k}{a} \pm \sqrt{\frac{k^2}{a^2} -4k} } { 2 } \\ \end{array}\)

 

\(\small{ \begin{array}{rcll} a= 1 \qquad k_{1} &=& 11.0498756211 \qquad k_{2} = -9.04987562112 \\ x_{1,2} &=& \frac{ k \pm \sqrt{k^2 -4\cdot k} } { 2 } \\ \mathbf{x_{1}} &\mathbf{=}& \mathbf{\frac{ k_1 + \sqrt{k_1^2 -4\cdot k_1} } { 2 } }\\ x_{1} &=& \frac{ 11.0498756211 + \sqrt{11.0498756211^2 -4\cdot 11.0498756211} } { 2 } \\ x_{1} &=& 9.93799368936 \\\\ \mathbf{x_{2} }&\mathbf{=}&\mathbf{ \frac{ k_1 - \sqrt{k_1^2 -4\cdot k_1} } { 2 } }\\ x_{2} &=& \frac{ 11.0498756211 - \sqrt{11.0498756211^2 -4\cdot 11.0498756211} } { 2 } \\ x_{2} &=& 1.11188193176\\\\ \mathbf{x_{3}} &\mathbf{=}& \mathbf{\frac{ k_2 + \sqrt{k_2^2 -4\cdot k_2} } { 2 } }\\ x_{3} &=& \frac{ -9.04987562112 + \sqrt{(-9.04987562112)^2 -4\cdot (-9.04987562112)} } { 2 } \\ x_{3} &=& 0.90874766162 \qquad \text{ keine Lösung } \qquad x \ge a\ ! \qquad x \ge 1\ !\\\\ \mathbf{x_{4}} &\mathbf{=}& \mathbf{\frac{ k_2 - \sqrt{k_1^2 -4\cdot k_2} } { 2 } }\\ x_{4} &=& \frac{ -9.04987562112- \sqrt{(-9.04987562112)^2 -4\cdot (-9.04987562112)} } { 2 } \\ x_{4} &=& -9.95862328274 \qquad \text{ keine Lösung } \qquad x \ge a\ ! \qquad x \ge 1\ !\\\\ \end{array} }\)


\(\small{ \begin{array}{rcll} y_{1} &=& x_2 = 1.11188193176 \\ y_{2} &=& x_1 = 9.93799368936 \end{array} }\)

 

Es gibt 2 reelle Lösungen.

Lösung 1: ( 9,93799368936 m; 1,11188193176 m )

Lösung 2: ( 1,11188193176 m; 9.93799368936 m )

laugh

02.02.2016
01.02.2016
 #1
avatar+14538 
0

Guten Tag !

Stammfunktion bilden von: 1/(e^(-3*s+1)

 

\(f(x) =\frac{1}{e^{-3*s+1}}=e^{3*s-1}\)         setze für   f(x)  bitte f(s)

 

\(Stammfunktion F(s)=\frac{1}{3}*e^{3s-1}+C\)

 

Gruß radix smiley !

01.02.2016

1 Benutzer online