Fragen   
Sortierung: 
30.05.2015
 #3
avatar+26404 
+5
30.05.2015
 #15
avatar+26404 
+5

$$\mathbf{
A = 0,5\cdot D \cdot \pi \cdot \left(D-\sqrt{D^2-d^2} \right)
}$$

 

Für die 0,5 schreibe ich lieber $$\small{\text{$ \frac{1}{2} $}}$$:

 

$$\small{\text{
$
\mathbf{
A = \frac{1}{2 } \cdot D \cdot \pi \cdot \left(D-\sqrt{D^2-d^2} \right)
}
$}}\\\\
\small{\text{
$
\boxed{\mathbf{
2\cdot A = D \cdot \pi \cdot \left(D-\sqrt{D^2-d^2} \right)}
}
$}}\\\\$$

 

Jetzt löse ich die Gleichung nach D auf:

 

$$\small{\text{
$
\mathbf{
2\cdot A = D^2 \cdot \pi -D \cdot \pi \cdot \sqrt{D^2-d^2}
}
$}}\\\\
\small{\text{
$
\begin{array}{rcl}
2\cdot A &=& D^2 \cdot \pi -D \cdot \pi \cdot \sqrt{D^2-d^2} \\\\
D \cdot \pi \cdot \sqrt{D^2-d^2} &=& D^2 \cdot \pi - 2\cdot A \\\\
D \cdot \pi \cdot \sqrt{D^2-d^2} &=& D^2 \cdot \pi - 2\cdot A \qquad | \qquad \rm{auf~beiden~Seiten~quadrieren}\\\\
( D \cdot \pi \cdot \sqrt{D^2-d^2} )^2 &=& (D^2 \cdot \pi - 2\cdot A)^2 \\\\
D^2 \cdot \pi^2 \cdot (D^2-d^2) &=& D^4\cdot \pi^2
- 2\cdot D^2 \cdot \pi \cdot 2\cdot A +2^2\cdot A^2\\\\
D^4 \cdot \pi^2 -D^2 \cdot \pi^2 \cdot d^2 &=& D^4\cdot \pi^2
- 2\cdot D^2 \cdot \pi \cdot 2\cdot A +2^2\cdot A^2 \qquad | \qquad \ D^4 \cdot \pi^2 \rm{~verschwindet}\\\\
-D^2 \cdot \pi^2 \cdot d^2 &=& - 2\cdot D^2 \cdot \pi \cdot 2\cdot A +2^2\cdot A^2 \\\\
4\cdot D^2 \cdot \pi \cdot A -D^2 \cdot \pi^2 \cdot d^2 &=& 2^2\cdot A^2 \\\\
D^2 \cdot \left(
4 \cdot \pi \cdot A - \pi^2 \cdot d^2 \right) &=& 2^2\cdot A^2 \\\\
D^2 &=& \dfrac{ 2^2\cdot A^2 }
{ 4 \cdot \pi \cdot A - \pi^2 \cdot d^2 } \qquad | \qquad \sqrt{} \\\\
D &=& \dfrac{ 2\cdot A }
{ \sqrt{ 4 \cdot \pi \cdot A - \pi^2 \cdot d^2 } } \\\\
\end{array}
$}}\\\\$$

.
30.05.2015

1 Benutzer online