Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+8
1819
6
avatar+1693 

The area of the equilateral triangle ABE = sin600(cm2). Line segment AI = 5cm. BF = EF =CI =DI ; find the area of the polygon DEGHI.

 

 May 29, 2015

Best Answer 

 #1
avatar+26396 
+18

The area of the equilateral triangle ABE = sin600(cm2). Line segment AI = 5cm. BF = EF ; find the area DEGHI.

 

AI = 5 cm

 

sin(60\ensurement)=123¯AB=¯BE=2¯BF=¯EF=22¯AF=2sin(60\ensurement)=223¯FI=¯AI¯AF=5223

 

If the perpendicular of H is H0 on line ED:

 

¯BE:¯HH0=1:23¯ED:¯EH0=1:23¯EH0=23(¯AI¯AF)¯HH0=23¯BE

 

The area DEGHI = A:

 

 2A=23(¯AI¯AF)(23¯BE)+13(¯AI¯AF)(23¯BE¯BF)+213(¯AI¯AF)¯BF 2A=(¯AI¯AF)[23232+13(162)+21322] 2A=(¯AI¯AF)23(43+16+22) 2A=(¯AI¯AF)2352 A=(¯AI¯AF)2512 A=(5223)2512 A=(523)512 A=2.22459041846 cm2

 

P.S.

 EH=(¯EH0¯HH0)=(0¯BE)+λ(¯AI¯AF¯BE2)=μ(¯AI¯AF¯BE)¯EH0=λ(¯AI¯AF)¯HH0=¯BEλ¯BE2 λ ?1.0+λ(¯AI¯AF)=μ(¯AI¯AF)λ=μ2.¯BEλ¯BE2=μ¯BE¯BEλ¯BE2=λ¯BE|μ=λ¯BEλ¯BE2=λ¯BE|:¯BE1λ2=λλ+λ2=132λ=1λ=23 ¯EH0=λ(¯AI¯AF)=23(¯AI¯AF) ¯HH0=¯BEλ¯BE2=¯BE23¯BE2=23¯BE

 

 May 29, 2015
 #1
avatar+26396 
+18
Best Answer

The area of the equilateral triangle ABE = sin600(cm2). Line segment AI = 5cm. BF = EF ; find the area DEGHI.

 

AI = 5 cm

 

sin(60\ensurement)=123¯AB=¯BE=2¯BF=¯EF=22¯AF=2sin(60\ensurement)=223¯FI=¯AI¯AF=5223

 

If the perpendicular of H is H0 on line ED:

 

¯BE:¯HH0=1:23¯ED:¯EH0=1:23¯EH0=23(¯AI¯AF)¯HH0=23¯BE

 

The area DEGHI = A:

 

 2A=23(¯AI¯AF)(23¯BE)+13(¯AI¯AF)(23¯BE¯BF)+213(¯AI¯AF)¯BF 2A=(¯AI¯AF)[23232+13(162)+21322] 2A=(¯AI¯AF)23(43+16+22) 2A=(¯AI¯AF)2352 A=(¯AI¯AF)2512 A=(5223)2512 A=(523)512 A=2.22459041846 cm2

 

P.S.

 EH=(¯EH0¯HH0)=(0¯BE)+λ(¯AI¯AF¯BE2)=μ(¯AI¯AF¯BE)¯EH0=λ(¯AI¯AF)¯HH0=¯BEλ¯BE2 λ ?1.0+λ(¯AI¯AF)=μ(¯AI¯AF)λ=μ2.¯BEλ¯BE2=μ¯BE¯BEλ¯BE2=λ¯BE|μ=λ¯BEλ¯BE2=λ¯BE|:¯BE1λ2=λλ+λ2=132λ=1λ=23 ¯EH0=λ(¯AI¯AF)=23(¯AI¯AF) ¯HH0=¯BEλ¯BE2=¯BE23¯BE2=23¯BE

 

heureka May 29, 2015
 #2
avatar+1693 
0

I'm too tired; I'll work on this one tomorrow; I'm going to Image result for sleep

 

@heureka:/  This time your numbers are correct! I came up with the same answer --with a little help from you. Thanks for showing me how to find a side of the equilateral triangle when only the area is known!

I guess..., I can go back to (see above image) 

 May 30, 2015
 #3
avatar+26396 
+5
heureka May 30, 2015
 #4
avatar+26396 
+13

how to find a side of the equilateral triangle when only the area A is known!

AE = AB = BE ( equilateral triangle )

P.S.

2A=¯AB¯BEsin(60\ensurement) \begin{array}{rcl} 2A &=& \overline{AB}\cdot \overline{BE}\cdot \sin{(60\ensurement{^{\circ}})} \qquad | \qquad \overline{AB} = \overline{BE}\\ 2A &=& \overline{BE}\cdot \overline{BE}\cdot \sin{(60\ensurement{^{\circ}})}\\ 2A &=& \overline{BE}^2\cdot \sin{(60\ensurement{^{\circ}})} \qquad | \qquad A = \sin{ (60\ensurement{^{\circ}}) } \\ 2 \cdot \sin{ (60\ensurement{^{\circ}}) } &=& \overline{BE}^2\cdot \sin{(60\ensurement{^{\circ}})} \\ 2 &=& \overline{BE}^2 \\ \overline{BE}^2 &=& 2 \qquad | \qquad \sqrt{} \\ \overline{BE} &=& \sqrt{2} \end{array} 

 May 30, 2015
 #5
avatar+584 
+8

fiora May 30, 2015
 #6
avatar+584 
+13

fiora May 30, 2015

0 Online Users