The area of the equilateral triangle ABE = sin600(cm2). Line segment AI = 5cm. BF = EF =CI =DI ; find the area of the polygon DEGHI.
The area of the equilateral triangle ABE = sin600(cm2). Line segment AI = 5cm. BF = EF ; find the area DEGHI.
AI = 5 cm
sin(60\ensurement∘)=12⋅√3¯AB=¯BE=√2¯BF=¯EF=√22¯AF=√2⋅sin(60\ensurement∘)=√22⋅√3¯FI=¯AI−¯AF=5−√22⋅√3
If the perpendicular of H is H0 on line ED:
¯BE:¯HH0=1:23¯ED:¯EH0=1:23¯EH0=23⋅(¯AI−¯AF)¯HH0=23⋅¯BE
The area DEGHI = A:
2⋅A=23⋅(¯AI−¯AF)⋅(23⋅¯BE)+13⋅(¯AI−¯AF)⋅(23⋅¯BE−¯BF)+2⋅13⋅(¯AI−¯AF)⋅¯BF 2⋅A=(¯AI−¯AF)⋅[23⋅23⋅√2+13⋅(16⋅√2)+2⋅13⋅√22] 2⋅A=(¯AI−¯AF)⋅√23⋅(43+16+22) 2⋅A=(¯AI−¯AF)⋅√23⋅52 A=(¯AI−¯AF)⋅√2⋅512 A=(5−√22⋅√3)⋅√2⋅512 A=(5⋅√2−√3)⋅512 A=2.22459041846 cm2
P.S.
→EH=(¯EH0¯HH0)=(0¯BE)+λ(¯AI−¯AF−¯BE2)=μ(¯AI−¯AF¯BE)¯EH0=λ(¯AI−¯AF)¯HH0=¯BE−λ¯BE2 λ ?1.0+λ(¯AI−¯AF)=μ(¯AI−¯AF)λ=μ2.¯BE−λ¯BE2=μ¯BE¯BE−λ¯BE2=λ¯BE|μ=λ¯BE−λ¯BE2=λ¯BE|:¯BE1−λ2=λλ+λ2=132λ=1λ=23 ¯EH0=λ(¯AI−¯AF)=23(¯AI−¯AF) ¯HH0=¯BE−λ¯BE2=¯BE−23¯BE2=23¯BE
The area of the equilateral triangle ABE = sin600(cm2). Line segment AI = 5cm. BF = EF ; find the area DEGHI.
AI = 5 cm
sin(60\ensurement∘)=12⋅√3¯AB=¯BE=√2¯BF=¯EF=√22¯AF=√2⋅sin(60\ensurement∘)=√22⋅√3¯FI=¯AI−¯AF=5−√22⋅√3
If the perpendicular of H is H0 on line ED:
¯BE:¯HH0=1:23¯ED:¯EH0=1:23¯EH0=23⋅(¯AI−¯AF)¯HH0=23⋅¯BE
The area DEGHI = A:
2⋅A=23⋅(¯AI−¯AF)⋅(23⋅¯BE)+13⋅(¯AI−¯AF)⋅(23⋅¯BE−¯BF)+2⋅13⋅(¯AI−¯AF)⋅¯BF 2⋅A=(¯AI−¯AF)⋅[23⋅23⋅√2+13⋅(16⋅√2)+2⋅13⋅√22] 2⋅A=(¯AI−¯AF)⋅√23⋅(43+16+22) 2⋅A=(¯AI−¯AF)⋅√23⋅52 A=(¯AI−¯AF)⋅√2⋅512 A=(5−√22⋅√3)⋅√2⋅512 A=(5⋅√2−√3)⋅512 A=2.22459041846 cm2
P.S.
→EH=(¯EH0¯HH0)=(0¯BE)+λ(¯AI−¯AF−¯BE2)=μ(¯AI−¯AF¯BE)¯EH0=λ(¯AI−¯AF)¯HH0=¯BE−λ¯BE2 λ ?1.0+λ(¯AI−¯AF)=μ(¯AI−¯AF)λ=μ2.¯BE−λ¯BE2=μ¯BE¯BE−λ¯BE2=λ¯BE|μ=λ¯BE−λ¯BE2=λ¯BE|:¯BE1−λ2=λλ+λ2=132λ=1λ=23 ¯EH0=λ(¯AI−¯AF)=23(¯AI−¯AF) ¯HH0=¯BE−λ¯BE2=¯BE−23¯BE2=23¯BE
I'm too tired; I'll work on this one tomorrow; I'm going to
@heureka:/ This time your numbers are correct! I came up with the same answer --with a little help from you. Thanks for showing me how to find a side of the equilateral triangle when only the area is known!
I guess..., I can go back to (see above image)
how to find a side of the equilateral triangle when only the area A is known!
AE = AB = BE ( equilateral triangle )
P.S.
2A=¯AB⋅¯BE⋅sin(60\ensurement∘) \begin{array}{rcl} 2A &=& \overline{AB}\cdot \overline{BE}\cdot \sin{(60\ensurement{^{\circ}})} \qquad | \qquad \overline{AB} = \overline{BE}\\ 2A &=& \overline{BE}\cdot \overline{BE}\cdot \sin{(60\ensurement{^{\circ}})}\\ 2A &=& \overline{BE}^2\cdot \sin{(60\ensurement{^{\circ}})} \qquad | \qquad A = \sin{ (60\ensurement{^{\circ}}) } \\ 2 \cdot \sin{ (60\ensurement{^{\circ}}) } &=& \overline{BE}^2\cdot \sin{(60\ensurement{^{\circ}})} \\ 2 &=& \overline{BE}^2 \\ \overline{BE}^2 &=& 2 \qquad | \qquad \sqrt{} \\ \overline{BE} &=& \sqrt{2} \end{array}