Hier die Lösung der Gleichung
6x + (3-x)² + 11 = 27 Klammer mit 2. Binom aflösen
6x + 9 -6x + x² + 11 = 27 Zusammenfassen und ordnen
x² + 20 = 27
x² = 7 x1 = + sqrt(7) x2 = - sqrt(7)
$${{\mathtt{x}}}^{{\mathtt{2}}} = {\mathtt{7}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\sqrt{{\mathtt{7}}}}\\
{\mathtt{x}} = {\sqrt{{\mathtt{7}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.645\: \!751\: \!311\: \!064\: \!590\: \!6}}\\
{\mathtt{x}} = {\mathtt{2.645\: \!751\: \!311\: \!064\: \!590\: \!6}}\\
\end{array} \right\}$$
Ich hoffe, dir geholfen zu haben!
Gruß "radix" $$\mathrm{\ }$$
$${\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\left({\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{x}}\right)}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{11}} = {\mathtt{27}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\sqrt{{\mathtt{7}}}}\\
{\mathtt{x}} = {\sqrt{{\mathtt{7}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.645\: \!751\: \!311\: \!064\: \!590\: \!6}}\\
{\mathtt{x}} = {\mathtt{2.645\: \!751\: \!311\: \!064\: \!590\: \!6}}\\
\end{array} \right\}$$
.