Fragen   
Sortierung: 
 #1
avatar+12531 
0
22.06.2015
 #4
avatar+26404 
+5

Drei bauklötze (würfel, zylinder, kegel) wurden aufeinander gestapelt. Der Kegel past genau auf den zylinder. Der durchmesser des Zylinders ist so groß wie seine Höhe. Die Kantenlänge des Würfels ist doppelt so groß, wie der Durchmesser desZylinders. der Kegel ist 3mal so hoch wie der Zylinder. Zusammen haben sie ein Volumen von 114,27cmhoch3. Welche Kantenlänge hat der Würfel und wie groß ist die oberfläche des zusammengesetzten Körpers ?

 

 

 

 

 

 

$$\small{\text{$
\begin{array}{|lcr|}
\hline
d=\mathrm{Durchmesser~Zylinder} \\
\hline
&&\\
h_{\mathrm{Kegel}} &=& 3d \\
&&\\
h_{\mathrm{Zylinder}} &=& d \\
&&\\
a_{\mathrm{Wuerfel}} &=& 2d \\
&&\\
\hline
\end{array}
\begin{array}{|lclclcl|}
\hline
&&&&&&\\
V_{\mathrm{Kegel}} &=& \frac{1}{3}\pi (\frac{d}{2})^2\cdot h_{\mathrm{Kegel}} &=& \frac{1}{3}\pi (\frac{d}{2})^2\cdot 3d = \pi (\frac{d}{2})^2\cdot d &=& \pi \dfrac{d^3}{4}\\
&&&&&&\\
V_{\mathrm{Zylinder}} &=& \pi (\frac{d}{2})^2\cdot h_{\mathrm{Zylinder}} &=& \pi (\frac{d}{2})^2\cdot d &=& \pi \dfrac{d^3}{4}\\
&&&&&&\\
V_{\mathrm{Wuerfel}} &=& a^3 &=& (2d)^3 &=& 8d^3\\
&&&&&&\\
\hline
\end{array}
$}}$$

 

$$\small{\text{$
\begin{array}{rcl}
114,27\mathrm{~cm^3} =V_{Zusammen} &=&
V_{\mathrm{Kegel}}
+ V_{\mathrm{Zylinder}}
+ V_{\mathrm{Wuerfel}} \\\\
V &=& \pi \frac{d^3}{4} + \pi \frac{d^3}{4} + 8d^3\\\\
V &=& 2\pi \frac{d^3}{4} + 8d^3 \\\\
V &=& d^3 ( \frac{\pi}{2} + 8 )\\\\
d^3 &=& \dfrac{V}{ \frac{\pi}{2} + 8 } \\\\
\mathbf{d} &\mathbf{=}& \mathbf{ \sqrt[3]{ \dfrac{V}{ \frac{\pi}{2} + 8 } } } \\\\
d & = & \sqrt[3]{ \dfrac{114,27\mathrm{~cm^3} }{ \frac{\pi}{2} + 8 } }\\\\
\mathbf{d} &\mathbf{=}& \mathbf{ 2,285571004 \mathrm{~cm} }\\\\
a_{\mathrm{Wuerfel}} &=& 2d \\\\
\mathbf{a_{\mathrm{Wuerfel}} } &\mathbf{=}& \mathbf{ 4,57114200801\mathrm{~cm} }\\\\
\end{array}
$}}\\\\$$

 

 

Berechnung der Oberfläche O :

$$\small{\text{$
\begin{array}{|lclcrcl|}
\hline
&&&&&&\\
M_{\mathrm{Kegel}} &=& \pi \cdot \frac{d}{2}\cdot s && s^2 &=& (3d)^2+ (\frac{d}{2})^2 \\
&&&&&&\\
&&&& s^2 &=& 9d^2+\frac{d^2}{4} \\
&&&&&&\\
&&&& s^2 &=& d^2 (9+\frac{1}{4}) \\
&&&&&&\\
&&&& s^2 &=& d^2 \cdot \frac{37}{4} \\
&&&&&&\\
&&&& s^2 &=& (\frac{d}{2})^2 \cdot 37 \\
&&&&&&\\
&&&& s &=& \frac{d}{2}\cdot\sqrt{37} \\
&&&&&&\\
M_{\mathrm{Kegel}} &=& \pi \cdot \frac{d}{2}\cdot \frac{d}{2}\cdot\sqrt{37} &&&=& \pi \cdot \frac{d^2}{4}\cdot\sqrt{37} \\
&&&&&&\\
M_{\mathrm{Zylinder}} &=& \pi d\cdot h_{\mathrm{Zylinder}} &=& \pi d\cdot d &=& \pi d^2\\
&&&&&&\\
O_{\mathrm{Wuerfel}} &=& 6a^2 &=& 6\cdot(2d)^2 &=& 24d^2\\
&&&&&&\\
A_{\mathrm{Kreis}} &=& \pi \cdot (\frac{d}{2})^2 &&&=& \pi\cdot \frac{d^2}{4} \\
&&&&&&\\
\hline
\end{array}
$}}$$

 

$$\small{\text{$
\begin{array}{rcl}
O_{Zusammen} &=&
M_{\mathrm{Kegel}}
+ M_{\mathrm{Zylinder}}
+ O_{\mathrm{Wuerfel}}
- A_{\mathrm{Kreis}} \\\\
&=&
\pi \cdot \frac{d^2}{4}\cdot\sqrt{37}
+ \pi d^2
+ 24d^2
- \pi\cdot \frac{d^2}{4}\\\\
&=& \frac{d^2}{4} ( \pi \cdot\sqrt{37} +4\pi + 96 -\pi ) \\\\
&=& \frac{d^2}{4} ( \pi \cdot\sqrt{37} +3\pi + 96 ) \\\\
&=& \frac{d^2}{4} [ \pi \cdot (\sqrt{37} +3 )+ 96 ] \\\\
&=& 1,30595870359\cdot 124,534340039 \\\\
\mathbf{ O_{\mathrm{Zusammen}} } &\mathbf{=}& \mathbf{162,636705270\mathrm{~cm}^2}
\end{array}
$}}$$

 

22.06.2015
 #8
avatar+26404 
0

Die Fläche A eines  Dreiecks mit Determinante berechnen:

Gegeben sind drei Punkte :

$$\small{\text{$
S_1(x_1|y_1) = (4|-3) \qquad S_2 (x_2|y_2)=(-2|0) \qquad S_3(x_3|y_3)=(-1|2)
$}}$$

$$\small{\text{$
\begin{array}{|l|l|l|} \hline & x & y \\
\hline
S_1 & x_1=4 & y_1=-3 \\
S_2 & x_2=-2 & y_2= 0 \\
S_3 & x_3=-1 & y_3=2 \\
\hline
\end{array} $}}\\\\$$

$$\small{\text{$
A = \dfrac{1}{2}\cdot
\begin{vmatrix}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1 \\
\end{vmatrix}
$ }}\\\\$$

Auflösung nach der 1. Spalte:

$$\small{\text{$
\begin{array}{lll}
A &=& \dfrac{1}{2}\cdot
\begin{vmatrix}
\textcolor[rgb]{1,0,0}{x_1} & y_1 & 1 \\
\textcolor[rgb]{1,0,0}{x_2} & y_2 & 1 \\
\textcolor[rgb]{1,0,0}{x_3} & y_3 & 1 \\
\end{vmatrix}
=\frac12\cdot \left(
\textcolor[rgb]{1,0,0}{x_1}\cdot
\begin{vmatrix}
y_2 & 1 \\
y_3 & 1 \\
\end{vmatrix}
-\textcolor[rgb]{1,0,0}{x_2}\cdot
\begin{vmatrix}
y_1 & 1 \\
y_3 & 1 \\
\end{vmatrix}
+\textcolor[rgb]{1,0,0}{x_3}\cdot
\begin{vmatrix}
y_1 & 1 \\
y_2 & 1 \\
\end{vmatrix}
\right)\\\\
&=& \frac12\cdot \left(~~ [~x_1\cdot
(y_2-y_3)~]-[~x_2\cdot
(y_1-y_3)~]+[~x_3\cdot
(y_1-y_2)~] ~~\right)\\\\
&=&
\mathbf{ \frac12\cdot \left(~~ [~x_1\cdot
(y_2-y_3)~]+[~x_2\cdot
(y_3-y_1)~]+[~x_3\cdot
(y_1-y_2)~] ~~\right)
} \\ \\
&=& \frac12\cdot \left(~~ [~4\cdot
(0-2)~]-[~2\cdot
(2-(-3))~]-[~1\cdot
(-3-0)~] ~~\right)\\\\
&=& \frac12\cdot \left(~~ [~4\cdot
(-2)~]-[~2\cdot
(2+3))~]-[~1\cdot
(-3)~] ~~\right)\\\\
&=& \frac12\cdot \left(~~ -8-10+3 ~~\right)\\\\
&=& -7,5\\\\
A&=& 7,5
\end{array}
$ }}\\\\$$

 

Auflösung nach der 2. Spalte:

$$\small{\text{$
\begin{array}{lll}
A &=& \dfrac{1}{2}\cdot
\begin{vmatrix}
x_1 & \textcolor[rgb]{1,0,0}{y_1} & 1 \\
x_2 & \textcolor[rgb]{1,0,0}{y_2} & 1 \\
x_3 & \textcolor[rgb]{1,0,0}{y_3} & 1 \\
\end{vmatrix}
=\frac12\cdot \left(
-\textcolor[rgb]{1,0,0}{y_1}\cdot
\begin{vmatrix}
x_2 & 1 \\
x_3 & 1 \\
\end{vmatrix}
+\textcolor[rgb]{1,0,0}{y_2}\cdot
\begin{vmatrix}
x_1 & 1 \\
x_3 & 1 \\
\end{vmatrix}
-\textcolor[rgb]{1,0,0}{y_3}\cdot
\begin{vmatrix}
x_1 & 1 \\
x_2 & 1 \\
\end{vmatrix}
\right)\\\\
&=& \frac12\cdot
\left(~~
-[~y_1\cdot (x_2-x_3)~]
+[~y_2\cdot (x_1-x_3)~]
-[~y_3\cdot (x_1-x_2)~]
~~\right)\\\\
&=& \mathbf{
\frac12\cdot
\left(~~
[~y_1\cdot (x_3-x_2)~]
+[~y_2\cdot (x_1-x_3)~]
+[~y_3\cdot (x_2-x_1)~]
~~\right)
}\\\\
&=& \frac12\cdot
\left(~~
[~-3\cdot (-1-(-2))~]
+[~0\cdot (4-(-1))~]
+[~2\cdot (-2-4)~]
~~\right)\\\\
&=& \frac12\cdot
\left(~~
[~-3\cdot 1~]
+[~2\cdot (-6)~]
~~\right)\\\\
&=& \frac12\cdot
\left(~~
-3 - 12
~~\right)\\\\
&=& \frac12\cdot
\left(~~
-15~~\right)\\\\
&=& -7,5\\\\
A&=& 7,5
\end{array}
$ }}\\\\$$

 

22.06.2015
21.06.2015
 #2
avatar+12531 
+5
21.06.2015
 #3
avatar+12531 
0
21.06.2015
 #3
avatar+12531 
0
21.06.2015
 #2
avatar+12531 
0
21.06.2015
 #1
avatar+19 
+3

So schwer ist es auch nicht, wenn man sich die Volumen Formeln der einzennen Bauklötze anschaut...

$${V}{\left({\mathtt{Wuerfel}}\right)} = {{\mathtt{a}}}^{{\mathtt{3}}}$$
$${\mathtt{a}} = {\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
 
$${V}{\left({\mathtt{Zylinder}}\right)} = {\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{h}}$$
$${\mathtt{h}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
 
$${V}{\left({\mathtt{Kegel}}\right)} = {\frac{{\mathtt{1}}}{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{h}}$$
$${\mathtt{h}} = {\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
 
$${\mathtt{V}} = \left[{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}\right]{\mathtt{\,\small\textbf+\,}}\left[{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}\right]{\mathtt{\,\small\textbf+\,}}\left[{\frac{{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{r}}}{{\mathtt{3}}}}\right]$$
$${\mathtt{V}} = {\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
$${\mathtt{V}} = {\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
$${\mathtt{V}} = {\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}$$
$${\mathtt{V}} = {\mathtt{64}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}$$
$${\mathtt{V}} = {\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)$$
$${\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}} = {\frac{{\mathtt{V}}}{\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)}}$$
$${{\mathtt{r}}}^{{\mathtt{3}}} = {\frac{{\mathtt{V}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)\right)}}$$
$${\mathtt{r}} = {\sqrt[{{\mathtt{3}}}]{{\frac{{\mathtt{114.27}}\left[{{cm}}^{{\mathtt{3}}}\right]}{\left({\mathtt{4}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)\right)}}}}$$ 
$$\underset{\,\,\,\,{\textcolor[rgb]{0.66,0.66,0.66}{\rightarrow {\mathtt{r}}}}}{{solve}}{\left({\mathtt{r}}={\sqrt[{{\mathtt{3}}}]{{\frac{{\mathtt{114.27}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)\right)}}}}\right)} \Rightarrow {\mathtt{r}} = {\sqrt[{{\mathtt{3}}}]{{\frac{{\mathtt{11\,427}}}{\left({\mathtt{400}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6\,400}}\right)}}}} \Rightarrow {\mathtt{r}} = {\mathtt{1.142\: \!785\: \!502\: \!002\: \!022\: \!8}}$$
 
So, besser spät als garnicht :)
2r = x oder h
21.06.2015
 #2
avatar+14538 
+3
21.06.2015
 #3
avatar+12531 
0
21.06.2015
20.06.2015
 #1
avatar+12531 
0
20.06.2015

0 Benutzer online