Anonymaus

avatar
BenutzernameAnonymaus
Punkte19
Membership
Stats
Fragen 1
Antworten 6

 #1
avatar+19 
+3

So schwer ist es auch nicht, wenn man sich die Volumen Formeln der einzennen Bauklötze anschaut...

$${V}{\left({\mathtt{Wuerfel}}\right)} = {{\mathtt{a}}}^{{\mathtt{3}}}$$
$${\mathtt{a}} = {\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
 
$${V}{\left({\mathtt{Zylinder}}\right)} = {\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{h}}$$
$${\mathtt{h}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
 
$${V}{\left({\mathtt{Kegel}}\right)} = {\frac{{\mathtt{1}}}{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{h}}$$
$${\mathtt{h}} = {\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
 
$${\mathtt{V}} = \left[{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}\right]{\mathtt{\,\small\textbf+\,}}\left[{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}\right]{\mathtt{\,\small\textbf+\,}}\left[{\frac{{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{r}}}{{\mathtt{3}}}}\right]$$
$${\mathtt{V}} = {\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
$${\mathtt{V}} = {\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
$${\mathtt{V}} = {\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}$$
$${\mathtt{V}} = {\mathtt{64}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}$$
$${\mathtt{V}} = {\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)$$
$${\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}} = {\frac{{\mathtt{V}}}{\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)}}$$
$${{\mathtt{r}}}^{{\mathtt{3}}} = {\frac{{\mathtt{V}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)\right)}}$$
$${\mathtt{r}} = {\sqrt[{{\mathtt{3}}}]{{\frac{{\mathtt{114.27}}\left[{{cm}}^{{\mathtt{3}}}\right]}{\left({\mathtt{4}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)\right)}}}}$$ 
$$\underset{\,\,\,\,{\textcolor[rgb]{0.66,0.66,0.66}{\rightarrow {\mathtt{r}}}}}{{solve}}{\left({\mathtt{r}}={\sqrt[{{\mathtt{3}}}]{{\frac{{\mathtt{114.27}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)\right)}}}}\right)} \Rightarrow {\mathtt{r}} = {\sqrt[{{\mathtt{3}}}]{{\frac{{\mathtt{11\,427}}}{\left({\mathtt{400}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6\,400}}\right)}}}} \Rightarrow {\mathtt{r}} = {\mathtt{1.142\: \!785\: \!502\: \!002\: \!022\: \!8}}$$
 
So, besser spät als garnicht :)
2r = x oder h
21.06.2015
 #2
avatar+19 
+3

$${\mathtt{u1}} = {\frac{\left({\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{252}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}}}\right)}{\left({\mathtt{18}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}$$

$${\mathtt{u1}} = {\frac{\left({\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{36}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{7}}}}\right)}{\left({\mathtt{18}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}$$

$${\mathtt{u1}} = {\frac{\left[{\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,-\,}}\left({\mathtt{6}}{\mathtt{\,\times\,}}{\left|{\mathtt{a}}\right|}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{7}}}}\right)\right]}{\left({\mathtt{18}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}$$

$${\mathtt{u1}} = {\frac{\left[{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,-\,}}\left({\left|{\mathtt{a}}\right|}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{7}}}}\right)\right]}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}$$

Ergänzung: (Danke Radix) Ich hätte das abs(a) und a nicht zusammen gefasst...

$${\mathtt{u1}} = {\frac{{\mathtt{a}}{\mathtt{\,\times\,}}\left({\mathtt{3}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{7}}}}\right)}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}$$

$${\mathtt{u1}} = {\frac{\left({\mathtt{3}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{7}}}}\right)}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{a}}\right)}}$$

.
20.06.2015