So schwer ist es auch nicht, wenn man sich die Volumen Formeln der einzennen Bauklötze anschaut...
$${V}{\left({\mathtt{Wuerfel}}\right)} = {{\mathtt{a}}}^{{\mathtt{3}}}$$
$${\mathtt{a}} = {\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
$${V}{\left({\mathtt{Zylinder}}\right)} = {\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{h}}$$
$${\mathtt{h}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
$${V}{\left({\mathtt{Kegel}}\right)} = {\frac{{\mathtt{1}}}{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{h}}$$
$${\mathtt{h}} = {\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
$${\mathtt{V}} = \left[{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}\right]{\mathtt{\,\small\textbf+\,}}\left[{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}\right]{\mathtt{\,\small\textbf+\,}}\left[{\frac{{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{r}}}{{\mathtt{3}}}}\right]$$
$${\mathtt{V}} = {\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
$${\mathtt{V}} = {\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{r}}$$
$${\mathtt{V}} = {\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{r}}\right)}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}$$
$${\mathtt{V}} = {\mathtt{64}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}$$
$${\mathtt{V}} = {\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)$$
$${\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}} = {\frac{{\mathtt{V}}}{\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)}}$$
$${{\mathtt{r}}}^{{\mathtt{3}}} = {\frac{{\mathtt{V}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)\right)}}$$
$${\mathtt{r}} = {\sqrt[{{\mathtt{3}}}]{{\frac{{\mathtt{114.27}}\left[{{cm}}^{{\mathtt{3}}}\right]}{\left({\mathtt{4}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)\right)}}}}$$
$$\underset{\,\,\,\,{\textcolor[rgb]{0.66,0.66,0.66}{\rightarrow {\mathtt{r}}}}}{{solve}}{\left({\mathtt{r}}={\sqrt[{{\mathtt{3}}}]{{\frac{{\mathtt{114.27}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}\left({\mathtt{16}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right)\right)}}}}\right)} \Rightarrow {\mathtt{r}} = {\sqrt[{{\mathtt{3}}}]{{\frac{{\mathtt{11\,427}}}{\left({\mathtt{400}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6\,400}}\right)}}}} \Rightarrow {\mathtt{r}} = {\mathtt{1.142\: \!785\: \!502\: \!002\: \!022\: \!8}}$$
So, besser spät als garnicht :)
2r = x oder h