Es geht auch so:
$${\mathtt{\,-\,}}{\frac{{\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{4}}}{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{11}}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{2}}}{\left({\mathtt{11}}{\mathtt{\,\times\,}}{\mathtt{5}}\right)}}{\mathtt{\,-\,}}{\frac{{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{4}}}{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{11}}\right)}}$$ ; $${\frac{{\mathtt{1}}}{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{11}}\right)}}$$ ausklammern
= $${\frac{{\mathtt{1}}}{{\mathtt{55}}}}{\mathtt{\,\times\,}}\left({\mathtt{\,-\,}}{\mathtt{28}}{\mathtt{\,\small\textbf+\,}}{\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{24}}\right) = {\frac{{\mathtt{1}}}{{\mathtt{55}}}}{\mathtt{\,\times\,}}\left(-{\mathtt{44}}\right) = {\mathtt{\,-\,}}{\frac{{\mathtt{44}}}{{\mathtt{55}}}} = {\mathtt{\,-\,}}{\frac{{\mathtt{4}}}{{\mathtt{5}}}}$$