Fragen   
Sortierung: 
 #3
avatar
0

Hi Melody..here's a short translation:

 

Imagine a bowl with three types of colored balls, eg. red/green/blue. In this example let's assume a total of 30 balls, 10 of each color. I now draw always two balls (not necessarily at the same time but they remain as a pair) without putting them back. The first pair of balls may now be either of two different colors or it may be of the same color, e.g. a pair of green balls. I now do continue to draw a second pair, and so on, until the bowl is empty. 

 

The question is:

What is the overall probability that I will draw at least three identical pairs, all of the same color? (e.g. 3 pairs of red balls).

 

What I meanwhile have figured out is that with a hypergeometric distribution I would be able to set up the probabilities of the first draw. Then, according to the results of the first draw - reducing the balls inside the bowl - the next draw can be calculated. The first 2-3 draws is ok to calculate somehow, however it ends up in approximately 60,000 different branches on 10 different levels, all backed with hypergeometric distributions. That is an incredible amount of potential ways to find a minimum of 3 pairs of identically colored balls..thus binomial tree is no solution, hypergeometric distribution only delivers the result for one draw but the overall probability after 10 draws is still not found..

 

I thought about a hypergeometric permutation (variation?) or something? Thanks for your interest..if you find any solution, please give an example, too, as I am not very skilled in reading mathematical symbols. One main problem is with n..I could use it for both, n=2 for collecting the pair as the random grab sample, others use it for the draws - if they grab one only. Here we've got both..Nobel prize?

 

Christof

 

 

 

26.01.2017
 #4
avatar+26404 
+20

Bestimme den minimalen Abstand zwischen dem Punkt P = (0,1) ∈ R^2 und der Parabel E = {(x,y) ∈ R^2 : y = x^2}.

Finde einen Punkt Q = (x0,y0) in der Parabel (y0 = x^2, x0), in dem dieser minimale Abstand angenommen wird.

 

Gegeben:

Punkt  \(P = (0,1) \qquad x_p = 0\quad y_p = 1\)

Parabel \(y = x^2\)

 

Gesucht:

Der mimimale Abstand von P zur Parabel am Punkt Q

 

Abstand Punkt und Parabel zum Quadrat:

\(\begin{array}{|rcll|} \hline d^2 = D &=& (y-y_p)^2 + (x-x_p)^2 \qquad & | \qquad y = x^2\\ D &=& (x^2-y_p)^2 + (x-x_p)^2 \\ D &=& x^4-2x^2y_p+y_p^2+x^2-2xx_p + x_p^2 \\ D &=& x^4+x^2(1-2y_p)-x\cdot 2x_p +x_p^2 +y_p^2 \\ \hline \end{array} \)

 

Mimimale Abstand (Extrempunkt):

1. Ableitung null setzen, und 2. Ableitung muss > 0 sein.

 

1. Ableitung von D:

\(\begin{array}{|rcll|} \hline D &=& x^4+x^2(1-2y_p)-x\cdot 2x_p +x_p^2 +y_p^2 \\ D' &=& 4x^3 +2x(1-2y_p)-2x_p \\ \hline \end{array}\)

 

1. Ableitung von D gleich null setzen:

\(\begin{array}{|rcll|} \hline D' = 4x^3 +2x(1-2y_p)-2x_p &=& 0 \quad & | \quad x_p = 0 \qquad y_p = 1 \\ 4x^3 +2x(1-2\cdot 1)-2\cdot 0 &=& 0 \\ 4x^3 +2x(-1) &=& 0 \\ 4x^3 -2x &=& 0 \quad & | \quad : 2 \\ 2x^3 -x &=& 0 \\ x\cdot (2x^2 -1) &=& 0 \\ \hline \end{array} \)

 

Überprüfung der 3 Lösungen ob ein relatives Mimimum (D'' >  0) vorliegt.

 

2. Ableitung von D:

\(\begin{array}{|rcll|} \hline D' &=& 4x^3 +2x(1-2y_p)-2x_p \\ D'' &=& 12x^2 + 2(1-2y_p)-2x_p \quad & | \quad x_p = 0 \qquad y_p = 1 \\ D'' &=& 12x^2 + 2(1-2\cdot 1)-2\cdot 0 \\ D'' &=& 12x^2 + 2(-1) \\ D'' &=& 12x^2 - 2 \\ \hline \end{array}\)

 

Die 3 Lösungen finden:

\(\begin{array}{|rcll|} \hline x\cdot (2x^2 -1) &=& 0 \\ x &=& 0 \Rightarrow x_1 = 0 \text{ keine Lösung, da } D'' = 12\cdot 0 - 2 < 0 \\\\ 2x^2 -1 &=& 0 \quad & | \quad +1 \\ 2x^2 &=& 1 \quad & | \quad : 2 \\ x^2 &=& \frac12 \\ x &=& \pm\sqrt{\frac12} \\ x_2 &=& +\sqrt{\frac12} \\ x_2 &=& \frac{ \sqrt{2} }{2} \text{ eine Lösung, da } D'' = 12\cdot (\frac{\sqrt{2} }{2})^2 - 2 > 0 \\\\ x_3 &=& -\sqrt{\frac12} \\ x_3 &=& -\frac{ \sqrt{2} }{2} \text{ eine Lösung, da } D'' = 12\cdot \frac{-\sqrt{2} }{2})^2 - 2 > 0 \\ \hline \end{array}\)

 

Die beiden Punkte Q sind:

\(\begin{array}{|rcll|} \hline x_{q_1} &=& \frac{ \sqrt{2} }{2} \\ y_{q_1} &=& ( \frac{ \sqrt{2} }{2} )^2 = \frac12 \\\\ x_{q_2} &=& - \frac{ \sqrt{2} }{2} \\ y_{q_2} &=& ( -\frac{ \sqrt{2} }{2} )^2 = \frac12 \\\\ \hline \end{array} \)

 

\(Q_1 (\frac{ \sqrt{2} }{2}, \frac12 )\)

\(Q_2 (\frac{ -\sqrt{2} }{2}, \frac12 )\)

 

 

Der minimale Abstand beträgt:
\(\begin{array}{|rcll|} \hline && \sqrt{(0-\frac{\sqrt{2} }{2})^2+(1-\frac12)^2} \\ &=& \sqrt{\frac14} \\ &=& \frac{1}{\sqrt{2}} \\ &=& \frac{\sqrt{2}}{2} \\ \hline \end{array} \)

 

 

laugh

26.01.2017
25.01.2017

0 Benutzer online