Fragen   
Sortierung: 
 #6
avatar+15147 
0

Hallo Gast, radix, Cediwelli und heureka!

 

y=(11-(x-2016)^0,5)^2-56 {nl} y=2193-x

 

Dieses Gleichungssystem hat offenbar mehrere Lösungspaare.

.

x1= 2234,657965919058 {nl} y1 = -41,657965915633

 

werden durch das Grafikbild

und die erste Computerrechnung bestätigt.

 

 

1. Computerrechnung

Variablen und Startwerte:

x = 2234,657975 {nl} y = -41,658

 

Lösung im 1. Durchlauf nach 1 Iterationen gefunden:

x1 = 2234,657965919058 {nl} y1 = -41,657965915633

Probe (die Funktionswerte müssen 0 sein): {nl} f1(x,y) = -9,97879112674127e-10 {nl} f2(x,y) = 3,4254625802532246e-9

 

Die von heureka errechneten Lösungswerte

werden mit der 2. Computerrechnung

und dem Grafikbild bestätigt.

Der Graf "y=(11-(x-2016)^0,5)^2-56" nähert sich

asymptotisch der Vertikalen "x=2016", was sich mit

"Mathegrafik10 home" nicht darstellen lässt. Deshalb ist

der Schnittpunkt nicht sichtbar, aber existent.

 

2. Computerrechnung

Variablen und Startwerte:

x= 2016 {nl} y= 177

 

Lösung im 1. Durchlauf nach 1 Iterationen gefunden:

x2 = 2015,999949102165 {nl} y2 = 177,00005092677

Probe (die Funktionswerte müssen 0 sein): {nl} f1(x,y) = NaN (Nah an Null ?) {nl} f2(x,y) = 2,8935573936905712e-8

Startwerte: {nl} x0 = 2016 {nl} y0 = 177

 

Das zweite Lösungspaar von heureka lässt sich

weder in der Grafik finden, noch mit der Computerrechnug

bestätigen. (Aber ⇓)

 

3. Computerrechnung

Variablen und Startwerte:

x= 2137 {nl} y= 56

 

1. Durchlauf: Nach 1 Iterationen keine Lösung gefunden {nl}               (siehe Probe)

x3 = 2248,950274828102 {nl} y3 = -55,998001249089

Probe (die Funktionswerte müssen 0 sein): {nl} f1(x,y) = -18,168686142362468 {nl} f2(x,y) = -0,04772642098663482

Startwerte: {nl} x0 = 2137 {nl} y0 = 56

 

Bei x = 2137 ist der Abstand zu f(1) und f(2) gleich !

 

f(1) = (11- (2137 - 2016)^0,5)^2 - 56 = -56

f(2) = 2193 - 2137 = 56 {nl}  

Grüße von asinus :- )

laugh  !

15.08.2016
 #5
avatar+26404 
0

wie löse ich

sqrt(x-2016)+sqrt(y-56)=11

x+y=2193

 

Wir haben:

\(\begin{array}{|lrcrl|} \hline (1) & \sqrt{x-2016}+\sqrt{y-56} &=& 11\\ (2) & x+y &=& 2193\\ \hline \end{array}\)

 

Auflösung der 2. Gleichung nach x:

\(\begin{array}{|lrcll|} \hline (2) & x+y &=& 2193 \quad & | \quad -y \\ & \mathbf{ x } & \mathbf{=} & \mathbf{2193 - y} \\ \hline \end{array} \)

 

Auflösung der 1. Gleichung nach y:

\(\begin{array}{|rcll|} \hline \sqrt{x-2016} +\sqrt{y-56}&=& 11 & | \quad -\sqrt{y-56} \\ \sqrt{x-2016} &=& 11 \quad -\sqrt{y-56} & | \quad \text{beide Seiten quadrieren}\\ x-2016 &=& (11 \quad -\sqrt{y-56})^2 \\ x-2016 &=& 11^2 -2\cdot 11 \cdot \sqrt{y-56} +(y-56) & | \quad + 2016\\ x &=& 11^2 -2\cdot 11 \cdot \sqrt{y-56} + y-56+ 2016\\ x &=& 121 -2\cdot 11 \cdot \sqrt{y-56} + y+1960\\ x &=& -2\cdot 11 \cdot \sqrt{y-56} + y+ 1960+121\\ x &=& -2\cdot 11 \cdot \sqrt{y-56} + y+ 2081 & | \quad +2\cdot 11 \cdot \sqrt{y-56}\\ 2\cdot 11 \cdot \sqrt{y-56} + x &=& y+ 2081 d & | \quad - x\\ 2\cdot 11 \cdot \sqrt{y-56} &=& y+ 2081 - x & | \quad x =2193 - y\\ 2\cdot 11 \cdot \sqrt{y-56} &=& y+ 2081 - (2193 - y) \\ 2\cdot 11 \cdot \sqrt{y-56} &=& y+ 2081 - 2193 + y \\ 11 \cdot \sqrt{y-56} &=& y - 56 & | \quad \text{beide Seiten quadrieren}\\ 121 \cdot (y-56) &=& (y-56)^2 \\ 121 \cdot (y-56) &=& y^2- 112y + 3136 \\ 121y - 6776 &=& y^2- 112y + 3136 & | \quad - 121y + 6776\\ 0 &=& y^2- 112y + 3136 - 121y + 6776\\ 0 &=& y^2- 233y + 9912\\ \mathbf{ y^2- 233y + 9912 } & \mathbf{=} & \mathbf{0} \\\\ y_{1,2} &=& \frac{233\pm\sqrt{233^2-4\cdot 9912} } { 2 } \\ y_{1,2} &=& \frac{233\pm\sqrt{14641} } { 2 } \\ y_{1,2} &=& \frac{233\pm 121 } { 2 } \\\\ y_1 &=& \frac{233 + 121 } { 2 } \\ \mathbf{ y_1} &\mathbf{ =}& \mathbf{ 177} \\\\ y_2 &=& \frac{233 - 121 } { 2 } \\ \mathbf{ y_2} &\mathbf{ =}& \mathbf{ 56} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x_1 & = & 2193 - y_1 \\ x_1 & = & 2193 - 177 \\ \mathbf{ x_1} & \mathbf{ =} & \mathbf{2016} \\\\ x_2 & = & 2193 - y_2 \\ x_2 & = & 2193 - 56 \\ \mathbf{ x_2} & \mathbf{ =} & \mathbf{2137} \\ \hline \end{array}\)

 

laugh

15.08.2016
14.08.2016
 #2
avatar+14538 
0

Hallo und guten Tag  !

 

wie kann ich x+4+*5x-21 (x=3) vereinfachen

 

Bitte überprüfe noch einmal deine Aufgabe.   + *   hintereinander ist unzulässig !

 

Gruß radix smiley !

 

Oder meinst du   x+4+5x -21       für  x = 3   ?            =>   3+4+5*3-21 = 1

 

                   oder    x+4*5x-21        für  x = 3  ?            =>    3+4*5*3-21 = 42

14.08.2016
 #1
avatar+14538 
0

Hallo und guten Morgen !

 

Warum gibt es ein anderes Ergebnis, wenn man sinh als Deg oder Rad rechnet? Deg und Rad unterscheidet man doch nur bei trigonometrischen Funktionen.

 

https://de.wikipedia.org/wiki/Hyperbelfunktion

 

Bitte anschauen!

An den Graphen (rechts) kann man erkennen, dass man  x  sowohl  in Deg  als auch in  Rad  ausdrücken kann.

 

Gruß radix smiley!

14.08.2016
12.08.2016
 #1
avatar+12531 
0
12.08.2016

1 Benutzer online