$${\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}\left({\sqrt{{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{6}}}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{16}}{\mathtt{\,\times\,}}{\mathtt{2}}}}\right)$$
= $${\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}\left({\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6}}}}{\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{2}}}}\right)$$
= $${\mathtt{4}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{18}}}}{\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6}}}} = {\mathtt{12}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{2}}}}{\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6}}}}$$
= $${\mathtt{12}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{2}}}}{\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6}}}} = -{\mathtt{2.625\: \!355\: \!193\: \!788\: \!284\: \!2}}$$
= $${\mathtt{4}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{2}}}}{\mathtt{\,\times\,}}\left({\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}\right) = -{\mathtt{2.625\: \!355\: \!193\: \!788\: \!284\: \!2}}$$
Ich hoffe, dass es nun so richtig ist !
Gruß radix !