Hi Tina,
war dies auch eine Aufgabe ? $${\left(-{\mathtt{2}}\right)}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{\left(-{\mathtt{1}}\right)}^{{\mathtt{223}}} = \left(-{\mathtt{8}}\right){\mathtt{\,\times\,}}\left(-{\mathtt{1}}\right) = {\mathtt{8}}$$
$${\frac{{\mathtt{5}}}{{\mathtt{13}}}}{\mathtt{\,\times\,}}{\mathtt{\,-\,}}\left({\frac{{\mathtt{10}}}{{\mathtt{6}}}}\right){\mathtt{\,\times\,}}{\mathtt{\,-\,}}\left({\frac{{\mathtt{13}}}{{\mathtt{15}}}}\right) = {\frac{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{13}}\right)}{\left({\mathtt{13}}{\mathtt{\,\times\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{15}}\right)}} = {\frac{{\mathtt{10}}}{{\mathtt{18}}}}$$
$${\frac{\left({\frac{{\mathtt{3}}}{{\mathtt{8}}}}\right)}{\left({\frac{{\mathtt{9}}}{{\mathtt{15}}}}\right)}} = {\frac{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{15}}\right)}{\left({\mathtt{8}}{\mathtt{\,\times\,}}{\mathtt{9}}\right)}} = {\frac{{\mathtt{15}}}{{\mathtt{24}}}}$$ ich habe alle Minuszeichen berücksichtigt ! (-)*(-) = (+)
$${\frac{{\mathtt{10}}}{{\mathtt{18}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{15}}}{{\mathtt{24}}}} = {\frac{{\mathtt{40}}}{{\mathtt{72}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{45}}}{{\mathtt{72}}}} = {\mathtt{\,-\,}}{\frac{{\mathtt{5}}}{{\mathtt{72}}}}$$
Zur Vereinfachung der Schreibweise und zun besseren Verständnis habe ich die Aufgabe in drei Schritten gelöst.
Endergebnis = $${\mathtt{\,-\,}}{\frac{{\mathtt{5}}}{{\mathtt{72}}}}$$
Gruß radix ! ( der sich über ein kurzes DANKE freuen würde.)