Wie sieht die 2. Ableitung zu folgender Funktion aus?
f(x)= ln(x+2)-ln(x+1)
\(\begin{array}{lcll} \boxed{~ \begin{array}{lcll} y&=& \ln{(~f(x)~)}\\ y' &=& \frac{f'(x)}{f(x)} \end{array} ~} \end{array}\)
\(\begin{array}{lcll} y&=& \ln{(~x+2~)}\\ y' &=& \frac{1}{(x+2)}\\\\ y&=& \ln{(~x+1~)}\\ y' &=& \frac{1}{(x+1)} \end{array}\)
\(\begin{array}{lcll} y&=& \ln{(~x+2~)} - \ln{(~x+1~)}\\ y' &=& \frac{1}{(x+2)}-\frac{1}{(x+1)} = -\frac{1}{x^2+3x+2}\\\\ \end{array}\)
\(\begin{array}{lcll} \boxed{~ \begin{array}{lcll} y&=& \frac{1}{f(x)} \\ &=& f(x)^{-1} \qquad \text{(nach der Kettenregel abgeleitet)}\\ y' &=& (-1) \cdot f(x)^{-1-1} \cdot f'(x) \\ &=& - f(x)^{-2} \cdot f'(x) \\ &=& - \frac{f'(x)}{f(x)^{2}} \end{array} ~} \end{array}\)
\(\begin{array}{lcll} y&=& \frac{1}{x+2}\\ y' &=& - \frac{1}{(x+2)^{2}}\\\\ y&=& \frac{1}{x+1}\\ y' &=& - \frac{1}{(x+1)^{2}}\\\\ \end{array}\)
\(\begin{array}{lcll} y'&=& \frac{1}{x+2} - \frac{1}{x+1}\\ y'' &=& - \frac{1}{(x+2)^{2}} - \left( - \frac{1}{(x+1)^{2}} \right)\\ &=& - \frac{1}{(x+2)^{2}} + \frac{1}{(x+1)^{2}} \\\\ \mathbf{y''} &\mathbf{=}& \mathbf{\frac{2x+3}{(x^2+3x+2)^2} } \end{array}\)