Fragen   
Sortierung: 
07.01.2016
 #2
avatar+26387 
+5

\(\begin{array}{rcll} \int \limits_{1}^{3} \frac{x-4}{2x+1} \ dx = \ ? \end{array}\)

 

\(\begin{array}{rcll} \int \limits_{1}^{3} \frac{x-4}{2x+1} \ dx &= & \int \limits_{1}^{3} \frac{x}{2x+1} \ dx -4 \int \limits_{1}^{3} \frac{1}{2x+1} \ dx \\ &= & \int \limits_{1}^{3} \frac{x}{2(x+\frac12)} \ dx -4 \int \limits_{1}^{3} \frac{1}{2x+1} \ dx \\ &= & \frac12 \int \limits_{1}^{3} \frac{x}{x+\frac12} \ dx -4 \int \limits_{1}^{3} \frac{1}{2x+1} \ dx \\ &= & \frac12 \int \limits_{1}^{3} \frac{x+\frac12-\frac12}{x+\frac12} \ dx -4 \int \limits_{1}^{3} \frac{1}{2x+1} \ dx \\ &= & \frac12 \int \limits_{1}^{3} \ dx +\frac12 \int \limits_{1}^{3} \frac{-\frac12}{x+\frac12} \ dx -4 \int \limits_{1}^{3} \frac{1}{2x+1} \ dx \\ &= & \frac12 \int \limits_{1}^{3} \ dx -\frac14 \int \limits_{1}^{3} \frac{1}{x+\frac12} \ dx -4 \int \limits_{1}^{3} \frac{1}{2x+1} \ dx \\ &= & \frac12 \int \limits_{1}^{3} \ dx -\frac94 \int \limits_{1}^{3} \frac{1}{x+\frac12} \ dx \\ &= & \frac12 [x]_1^3 -\frac94 [\ln{(x+\frac12)}]_1^3 \\ &= & \frac12 (3-1) -\frac94 [\ln{(3+\frac12)}-\ln{(1+\frac12)} ] \\ &= & \frac12 (3-1) -\frac94 [\ln{ (\frac72)}-\ln{(\frac32)} ] \\ &= & \frac12 (3-1) -\frac94 [\ln{ \left( \frac{ \frac72 }{ \frac32 } \right) } ] \\ &= & \frac12 (3-1) -\frac94 [\ln{ ( \frac{ 7 }{ 3 } ) } ] \\ &= & \frac12 (2) -\frac94 [\ln{ ( \frac{ 7 }{ 3 } ) } ] \\ &= & 1 -\frac94 [\ln{ ( \frac{ 7 }{ 3 } ) } ] \\ &=& 1-2,25\cdot 0,84729786039\\ &=& 1- 1,90642018587\\ &=& -0,90642018587\\ \mathbf{ \int \limits_{1}^{3} \frac{x-4}{2x+1} \ dx } &\mathbf{=}& \mathbf{-0,90642018587} \end{array}\)

 

laugh

07.01.2016
 #1
avatar+14538 
0

Hallo,

 

bitte ansehen:

 

https://de.wikipedia.org/wiki/Sinus_und_Kosinus

 

http://tube.geogebra.org/material/simple/id/2093925

 

anklicken !     bei GeoGebra unten links auf Startzeichen klicken !

 

Gruß radix smiley !

07.01.2016
 #2
avatar+26387 
+5

Berechnung der Bogenlänge einer Kurve, es gilt

\(L(c) = \int \limits_{a}^{b} ||~ \dot c(t) ~|| \ dt \)

 

\(\begin{array}{lcl} \text{Für die Polarkoordinaten } r \equiv r(t) \text{ und } \varphi \equiv \varphi (t) \text{ gilt: }\\ \quad c(t) = \binom{\cos{(t)}}{\sin{(t)}} = ( \cos{(t)},\sin{(t)})^T \qquad \text{ für } a\le t \le b \\ \quad L(c) = \int \limits_{a}^{b} \sqrt{ \dot r^2 + r^2\cdot \dot\varphi^2 } \ dt. \end{array}\)

 

Wir haben eine Kardioide (Herzlinie)  in Polarkoordinaten

\(\begin{array}{rcl} L(c) &=& \int \limits_{0}^{2\pi} ||~ [~a\cdot(1+\cos{(t)}) ~]' ~|| \ dt \\\\ r(t) &=& a\cdot(1+\cos{(t)}) \\ \varphi(t) &=& t \\\\ \dot r(t) &=& -a\cdot \sin{(t)}\\ \left[ \dot r(t) \right]^2 &=& \dot r^2 = a^2\cdot \sin^2{(t)}\\ \left[ r(t)\right]^2 &=& r^2= a^2\cdot(1+\cos{(t)})^2 \\ \dot \varphi(t) &=& \dot\varphi = 1 \\ \left[ \dot \varphi(t) \right]^2 &=& \dot\varphi^2 = 1^2 = 1 \\ a&=& 0\\ b&=& 2\pi\\\\ L(c) &=& \int \limits_{a}^{b} \sqrt{ \dot r^2 + r^2\cdot \dot\varphi^2 } \ dt\\ L(c) &=& \int \limits_{0}^{2\pi} \sqrt{ \dot r^2 + r^2\cdot \dot\varphi^2 } \ dt\\ L(c) &=& \int \limits_{0}^{2\pi} \sqrt{ a^2\cdot \sin^2{(t)} + a^2\cdot(1+\cos{(t)})^2\cdot 1 } \ dt\\ &=& \int \limits_{0}^{2\pi} \sqrt{ a^2\cdot \sin^2{(t)} + a^2\cdot(1+2\cos{(t)}+\cos^2{(t)} )} \ dt\\ &=& a\cdot \int \limits_{0}^{2\pi} \sqrt{ \sin^2{(t)} + 1+2\cos{(t)}+\cos^2{(t)} } \ dt\\ &=& a\cdot \int \limits_{0}^{2\pi} \sqrt{ \sin^2{(t)} + \cos^2{(t)} + 1+2\cos{(t)} } \ dt\\ &=& a\cdot \int \limits_{0}^{2\pi} \sqrt{ 1 + 1+2\cos{(t)} } \ dt\\ &=& a\cdot \int \limits_{0}^{2\pi} \sqrt{2(1+\cos{(t)}) } \ dt\\ &=& a\cdot \sqrt{2} \int \limits_{0}^{2\pi} \sqrt{ 1+\cos{(t)} } \ dt\\\\ && \boxed{~ \begin{array}{rcl} \text{Formel: } \\ \cos{(2\alpha)} &=& 2\cos^2{(\alpha)}-1\\ \cos{(\alpha)} &=& 2\cos^2{(\frac{\alpha}{2})}-1\\ 1+\cos{(\alpha)} &=& 2\cos^2{(\frac{\alpha}{2})}\\ \sqrt{1+\cos{(\alpha)}} &=& \sqrt{2}\cdot \cos{(\frac{\alpha}{2})}\\ \end{array} ~}\\\\ &=& a\cdot \sqrt{2} \int \limits_{0}^{2\pi} \sqrt{2}\cdot |~\cos{(\frac{t}{2})}~| \ dt\\ &=& 2a\cdot \int \limits_{0}^{2\pi} |~\cos{(\frac{t}{2})}~| \ dt\\ &=& 2a\cdot\left[ 2\cdot \int \limits_{0}^{\pi} \cos{(\frac{t}{2})}\ dt \right]\\ &=& 4a\cdot \int \limits_{0}^{\pi} \cos{(\frac{t}{2})}\ dt \\ &=& 4a\cdot \left[ 2\cdot \sin{(\frac{t}{2})} \right]_{0}^{\pi}\\ &=& 8a\cdot \left[ \sin{(\frac{\pi}{2})} - \sin{(\frac{0}{2})} \right]\\ &=& 8a\cdot \left[ 1 - 0 \right]\\ L(c) &=& 8a\\ \end{array}\)

 

Die  Kardioide (Herzlinie) hat die Bogenlänge von 8a

 

laugh

07.01.2016
 #2
avatar+14538 
0

Guten Morgen,

du könntest es auch mit dem Höhensatz des Euklid machen:

 

http://www.mathematik-wissen.de/hohensatz_des_euklid.htm

 

anklicken !

 

Halbkreis mit   r = 4 cm zeichnen , Mittelsenkrechte  = Höhe einzeichnen  =>  q = 2  und p = 2

damit   h² = 2 * 2     =>   \(h=\sqrt{4}\)

 

Höhe nach unten um   1 cm  verlängern  und du hast das Verhältnis   \(\sqrt{4}:1\)

 

Gruß radix smiley !

07.01.2016
06.01.2016
 #2
avatar
0
06.01.2016

2 Benutzer online

avatar
avatar