3∫1x−42x+1 dx= ?
3∫1x−42x+1 dx=3∫1x2x+1 dx−43∫112x+1 dx=3∫1x2(x+12) dx−43∫112x+1 dx=123∫1xx+12 dx−43∫112x+1 dx=123∫1x+12−12x+12 dx−43∫112x+1 dx=123∫1 dx+123∫1−12x+12 dx−43∫112x+1 dx=123∫1 dx−143∫11x+12 dx−43∫112x+1 dx=123∫1 dx−943∫11x+12 dx=12[x]31−94[ln(x+12)]31=12(3−1)−94[ln(3+12)−ln(1+12)]=12(3−1)−94[ln(72)−ln(32)]=12(3−1)−94[ln(7232)]=12(3−1)−94[ln(73)]=12(2)−94[ln(73)]=1−94[ln(73)]=1−2,25⋅0,84729786039=1−1,90642018587=−0,906420185873∫1x−42x+1 dx=−0,90642018587
3∫1x−42x+1 dx= ?
3∫1x−42x+1 dx=3∫1x2x+1 dx−43∫112x+1 dx=3∫1x2(x+12) dx−43∫112x+1 dx=123∫1xx+12 dx−43∫112x+1 dx=123∫1x+12−12x+12 dx−43∫112x+1 dx=123∫1 dx+123∫1−12x+12 dx−43∫112x+1 dx=123∫1 dx−143∫11x+12 dx−43∫112x+1 dx=123∫1 dx−943∫11x+12 dx=12[x]31−94[ln(x+12)]31=12(3−1)−94[ln(3+12)−ln(1+12)]=12(3−1)−94[ln(72)−ln(32)]=12(3−1)−94[ln(7232)]=12(3−1)−94[ln(73)]=12(2)−94[ln(73)]=1−94[ln(73)]=1−2,25⋅0,84729786039=1−1,90642018587=−0,906420185873∫1x−42x+1 dx=−0,90642018587