heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+8

In einem Gefäß befinden sich eine weiße(w), vier rote(r) und fünf blaue(b) Kugeln. Es werden gleichzeitig zwei Kugeln gezogen.

Baum:

1w,4r,5b ( Anzahl Kugeln = 10 )

1. Ziehung  w gezogen ( 1/10 )

                  r gezogen  ( 4/10 )

                  b gezogen ( 5/10 )

2. Ziehung w und  r gezogen ( 1 / 10 ) * ( 4 /9 )

                 w und b gezogen ( 1 / 10 ) * ( 5 / 9 )

                 r und r gezogen ( 4 / 10) * ( 3 / 9 )

                 r und b gezogen ( 4 / 10 ) * ( 5 / 9 )

                 r und w gezogen ( 4 / 10 ) * ( 1 / 9 )

                 b und r gezogen ( 5 / 10 ) * ( 4 / 9 )

                 b und b gezogen ( 5 / 10 ) * ( 4 / 9 )

                 b und w gezogen ( 5 / 10 ) * ( 1 / 9 )

 

a) Mit welcher Wahrscheinlichkeit werden zwei verschiedenfarbige Kugeln gezogen?

$$\small{\text{
Farben wr, wb, rb,rw, br,bw:
}}\\
\small{\text{
$
\frac{1}{10}\cdot \frac{4}{9}
+\frac{1}{10}\cdot \frac{5}{9}
+\frac{4}{10}\cdot \frac{5}{9}
+\frac{4}{10}\cdot \frac{1}{9}
+\frac{5}{10}\cdot \frac{4}{9}
+\frac{5}{10}\cdot \frac{1}{9}
=\frac{1\cdot4+1\cdot 5+ 4\cdot 5 +4\cdot 1 + 5\cdot 4 + 5\cdot 1}{10\cdot 9}
=\dfrac{58}{90}=64,\overline{4}\%
$
}}$$

$$=\dfrac{ \binom11\cdot\binom41\cdot\binom50 +\binom11\cdot\binom40\cdot\binom51 + \binom10\cdot \binom41\cdot \binom51 } {\binom{10}{2}}$$

b) Wie groß ist die Wahrscheinlichkeit, dass höchstens eine der gezogenen Kugeln rot ist?

$$\small{\text{
Farben wr,wb, rb, rw, br, bb, bw:
}}\\
\small{\text{
$
\frac{1}{10} \cdot \frac{4}{9}
+\frac{1}{10}\cdot \frac{5}{9}
+\frac{4}{10}\cdot \frac{5}{9}
+\frac{4}{10}\cdot \frac{1}{9}
+\frac{5}{10}\cdot \frac{4}{9}
+\frac{5}{10}\cdot \frac{4}{9}
+\frac{5}{10}\cdot \frac{1}{9}
=\frac {1\cdot 4+ 1\cdot 5+ 4\cdot 5 +4\cdot 1 + 5\cdot 4 +5\cdot 4 + 5\cdot 1 }{10\cdot 9}
=\dfrac{78}{90}=86,\overline{6}\%
$
}}$$

$$=\dfrac{ \binom41\cdot\binom61 + \binom40\cdot\binom62 } {\binom{10}{2}}$$

.
13.04.2015
 #3
avatar+26387 
+12

$$\lim \limits_{n\rightarrow +\infty} {\sqrt{(n^2-n)}-n } =\ ?$$

Wir formen um:

$$=\lim \limits_{n\rightarrow +\infty} {\sqrt{n(n-1)}-n }\\
=\lim \limits_{n\rightarrow +\infty} {\sqrt{\frac{n}{n}\cdot n(n-1)}-n }\\
=\lim \limits_{n\rightarrow +\infty} {\sqrt{\frac{1}{n}\cdot n^2(n-1)}-n }\\
=\lim \limits_{n\rightarrow +\infty} { n \sqrt{\frac{n-1}{n}}-n }\\
=\lim \limits_{n\rightarrow +\infty} { n \sqrt{1-\frac{1}{n}}-n }\\
=\lim \limits_{n\rightarrow +\infty} { n \textcolor[rgb]{1,0,0}{\left(1-\frac{1}{n}\right)^{\frac{1}{2}} } -n }\\$$

Die Taylorreihen-Entwicklung von \sqrt{x} mit Entwicklungspunkt 1

\begin{align} \sqrt{1+x} = \sum_{n=0}^\infty \binom{1/2}{n}\,x^n &= \sum_{n=0}^\infty \binom{2n}{n}\, \frac{ (-1)^n }{ (1-2n)\, 4^n }\,x^n\\ &= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16} x^3 - \frac{5}{128} x^4 \pm \dots \end{align}

Wir setzen für  $$\small{\text{$x=-\frac{1}{n}$}}$$

$$\small{\text{
$
\left(1-\frac{1}{n}\right)^{\frac{1}{2}}
=
1
+ \dfrac{1}{2}\cdot \left( -\dfrac{1}{n} \right)
- \dfrac{1}{8}\cdot \left( -\dfrac{1}{n} \right)^2
+ \dfrac{1}{16}\cdot \left( -\dfrac{1}{n} \right)^3
- \dfrac{5}{128}\cdot \left( -\dfrac{1}{n} \right)^4
\pm \cdots
$
}}\\\\
\small{\text{
$
=
1
- \dfrac{1}{2}\cdot \left( \dfrac{1}{n} \right)
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n} \right)^2
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n} \right)^3
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n} \right)^4
\pm \cdots
$
}}\\\\
\small{\text{$
{ n \textcolor[rgb]{1,0,0}{\left(1-\frac{1}{n}\right)^{\frac{1}{2}} } -n }
=
n\cdot \left[
1
- \dfrac{1}{2}\cdot \left( \dfrac{1}{n} \right)
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n} \right)^2
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n} \right)^3
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n} \right)^4
\pm \cdots \right] -n
$}}\\\\
\small{\text{$
{ n \textcolor[rgb]{1,0,0}{\left(1-\frac{1}{n}\right)^{\frac{1}{2}} } -n }
=
\not{n}
- \dfrac{1}{2}\cdot \left( \dfrac{n}{n} \right)
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n^1} \right)
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n^2} \right)
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n^3} \right)
\pm \cdots -\not{n}
$}}\\\\
\small{\text{$
{ n \textcolor[rgb]{1,0,0}{\left(1-\frac{1}{n}\right)^{\frac{1}{2}} } -n }
=
- \dfrac{1}{2}\cdot \left( \dfrac{n}{n} \right)
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n^1} \right)
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n^2} \right)
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n^3} \right)
\pm \cdots
$}}\\\\
\small{\text{$
{ n \textcolor[rgb]{1,0,0}{\left(1-\frac{1}{n}\right)^{\frac{1}{2}} } -n }
=
- \dfrac{1}{2}
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n^1} \right)
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n^2} \right)
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n^3} \right)
\pm \cdots
$}}\\\\
\small{\text{
$
\lim \limits_{n\rightarrow +\infty} \left[ - \dfrac{1}{2}
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n^1} \right)
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n^2} \right)
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n^3} \right)
\pm \cdots \right] = -\dfrac{1}{2}
$}}$$

.
29.03.2015
 #4
avatar+26387 
+5

Hallo Melody,

my english is not so good, but i start.

We have a Point P, the coordinate is ( x,y ). So we have P(x,y).

The question is, what is the angle from the x-axis to that Point (we call the angle also polar angle ). See: https://en.wikipedia.org/wiki/Polar_coordinate_system

The formula for the angular coordinate is :  $$\alpha = \arctan{( \frac{y_p}{x_p} )}\\
\text{ or } \alpha = \mathrm{atan( \frac{y_p}{x_p} ) }$$

But this formula does not calculate the angle correctly. We have the same angle in  the Quadrant ( I and III ) and in the Quadrant ( II and IV ).

Why?

Because $$\frac {+y_p}{+x_p} = \frac{-y_p}{-x_p} = +\frac {y_p}{x_p}$$ and $$\frac {+y_p}{-x_p} = \frac{-y_p}{x_p} = - \frac {y_p}{x_p}$$

If we divide y by x, the information about the quadrant has disappeared.

But we can see:

$$\\\small{\text{Point in the I. Quadrant $y_p > 0 $ and $ x_p > 0 $}}\\
\small{\text{Point in the II. Quadrant $y_p > 0 $ and $ x_p < 0 $}}\\
\small{\text{Point in the III. Quadrant $y_p < 0 $ and $ x_p < 0 $}}\\
\small{\text{Point in the IV. Quadrant $y_p < 0 $ and $ x_p > 0 $}}\\$$

We must correct the angular coordinate afterwards.

and if y or x is zero, we must put constants:

$$\\\small{\text{$ y_p = 0 $ and $ x_p > 0 \qquad \alpha = 0 $ }}\\
\small{\text{$ y_p > 0 $ and $ x_p = 0 \qquad \alpha = \frac{\pi}{2}$ }}\\
\small{\text{$ y_p = 0 $ and $ x_p < 0 \qquad \alpha = \pi$ }}\\
\small{\text{$ y_p < 0 $ and $ x_p = 0 \qquad \alpha = \frac{3}{2}\pi$ }}\\$$

We have succeed, there is a function which takes this work from us!

The funktion is atan2

and needs two parametres $$\small{\text{ $y_p$ and $x_p$}}$$

The new formula for the angular coordinate is :  $$\boxed{\ \alpha = \mathrm{atan} 2{( y_p, x_p )}\ }$$

.
29.03.2015
 #2
avatar+26387 
+5

 

You can also use atan2, see examples below, to get the angle in the quadrant  (I, II, III, and IV):

$$\\\text{Formula:}\\
\alpha = \mathrm{atan2}\ {(\Delta y, \Delta x)}$$

Examples:

http://web2.0rechner.de/#atan2(1,1)  $$\alpha = 45\ \mathrm{degrees} \qquad \text{Quadrant I}$$

http://web2.0rechner.de/#atan2(1,-1) $$\alpha = 135\ \mathrm{degrees} \qquad \text{Quadrant II}$$

http://web2.0calc.com/#atan2(-1,-1)    $$\alpha = -135\ \mathrm{degrees} \qquad \text{Quadrant III}$$

http://web2.0rechner.de/#atan2(-1,1)  $$\alpha = -45\ \mathrm{degrees} \qquad \text{Quadrant IV}$$

Click the "=" Button in the link

29.03.2015