$$\lim \limits_{n\rightarrow +\infty} {\sqrt{(n^2-n)}-n } =\ ?$$
Wir formen um:
$$=\lim \limits_{n\rightarrow +\infty} {\sqrt{n(n-1)}-n }\\
=\lim \limits_{n\rightarrow +\infty} {\sqrt{\frac{n}{n}\cdot n(n-1)}-n }\\
=\lim \limits_{n\rightarrow +\infty} {\sqrt{\frac{1}{n}\cdot n^2(n-1)}-n }\\
=\lim \limits_{n\rightarrow +\infty} { n \sqrt{\frac{n-1}{n}}-n }\\
=\lim \limits_{n\rightarrow +\infty} { n \sqrt{1-\frac{1}{n}}-n }\\
=\lim \limits_{n\rightarrow +\infty} { n \textcolor[rgb]{1,0,0}{\left(1-\frac{1}{n}\right)^{\frac{1}{2}} } -n }\\$$
Die Taylorreihen-Entwicklung von mit Entwicklungspunkt 1
Wir setzen für $$\small{\text{$x=-\frac{1}{n}$}}$$
$$\small{\text{
$
\left(1-\frac{1}{n}\right)^{\frac{1}{2}}
=
1
+ \dfrac{1}{2}\cdot \left( -\dfrac{1}{n} \right)
- \dfrac{1}{8}\cdot \left( -\dfrac{1}{n} \right)^2
+ \dfrac{1}{16}\cdot \left( -\dfrac{1}{n} \right)^3
- \dfrac{5}{128}\cdot \left( -\dfrac{1}{n} \right)^4
\pm \cdots
$
}}\\\\
\small{\text{
$
=
1
- \dfrac{1}{2}\cdot \left( \dfrac{1}{n} \right)
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n} \right)^2
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n} \right)^3
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n} \right)^4
\pm \cdots
$
}}\\\\
\small{\text{$
{ n \textcolor[rgb]{1,0,0}{\left(1-\frac{1}{n}\right)^{\frac{1}{2}} } -n }
=
n\cdot \left[
1
- \dfrac{1}{2}\cdot \left( \dfrac{1}{n} \right)
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n} \right)^2
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n} \right)^3
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n} \right)^4
\pm \cdots \right] -n
$}}\\\\
\small{\text{$
{ n \textcolor[rgb]{1,0,0}{\left(1-\frac{1}{n}\right)^{\frac{1}{2}} } -n }
=
\not{n}
- \dfrac{1}{2}\cdot \left( \dfrac{n}{n} \right)
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n^1} \right)
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n^2} \right)
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n^3} \right)
\pm \cdots -\not{n}
$}}\\\\
\small{\text{$
{ n \textcolor[rgb]{1,0,0}{\left(1-\frac{1}{n}\right)^{\frac{1}{2}} } -n }
=
- \dfrac{1}{2}\cdot \left( \dfrac{n}{n} \right)
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n^1} \right)
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n^2} \right)
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n^3} \right)
\pm \cdots
$}}\\\\
\small{\text{$
{ n \textcolor[rgb]{1,0,0}{\left(1-\frac{1}{n}\right)^{\frac{1}{2}} } -n }
=
- \dfrac{1}{2}
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n^1} \right)
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n^2} \right)
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n^3} \right)
\pm \cdots
$}}\\\\
\small{\text{
$
\lim \limits_{n\rightarrow +\infty} \left[ - \dfrac{1}{2}
- \dfrac{1}{8}\cdot \left( \dfrac{1}{n^1} \right)
- \dfrac{1}{16}\cdot \left( \dfrac{1}{n^2} \right)
- \dfrac{5}{128}\cdot \left( \dfrac{1}{n^3} \right)
\pm \cdots \right] = -\dfrac{1}{2}
$}}$$
Hallo Melody,
my english is not so good, but i start.
We have a Point P, the coordinate is ( x,y ). So we have P(x,y).
The question is, what is the angle from the x-axis to that Point (we call the angle also polar angle ). See: https://en.wikipedia.org/wiki/Polar_coordinate_system
The formula for the angular coordinate is : $$\alpha = \arctan{( \frac{y_p}{x_p} )}\\
\text{ or } \alpha = \mathrm{atan( \frac{y_p}{x_p} ) }$$
But this formula does not calculate the angle correctly. We have the same angle in the Quadrant ( I and III ) and in the Quadrant ( II and IV ).
Why?
Because $$\frac {+y_p}{+x_p} = \frac{-y_p}{-x_p} = +\frac {y_p}{x_p}$$ and $$\frac {+y_p}{-x_p} = \frac{-y_p}{x_p} = - \frac {y_p}{x_p}$$
If we divide y by x, the information about the quadrant has disappeared.
But we can see:
$$\\\small{\text{Point in the I. Quadrant $y_p > 0 $ and $ x_p > 0 $}}\\
\small{\text{Point in the II. Quadrant $y_p > 0 $ and $ x_p < 0 $}}\\
\small{\text{Point in the III. Quadrant $y_p < 0 $ and $ x_p < 0 $}}\\
\small{\text{Point in the IV. Quadrant $y_p < 0 $ and $ x_p > 0 $}}\\$$
We must correct the angular coordinate afterwards.
and if y or x is zero, we must put constants:
$$\\\small{\text{$ y_p = 0 $ and $ x_p > 0 \qquad \alpha = 0 $ }}\\
\small{\text{$ y_p > 0 $ and $ x_p = 0 \qquad \alpha = \frac{\pi}{2}$ }}\\
\small{\text{$ y_p = 0 $ and $ x_p < 0 \qquad \alpha = \pi$ }}\\
\small{\text{$ y_p < 0 $ and $ x_p = 0 \qquad \alpha = \frac{3}{2}\pi$ }}\\$$
We have succeed, there is a function which takes this work from us!
The funktion is atan2
and needs two parametres $$\small{\text{ $y_p$ and $x_p$}}$$
The new formula for the angular coordinate is : $$\boxed{\ \alpha = \mathrm{atan} 2{( y_p, x_p )}\ }$$
.
You can also use atan2, see examples below, to get the angle in the quadrant (I, II, III, and IV):
$$\\\text{Formula:}\\
\alpha = \mathrm{atan2}\ {(\Delta y, \Delta x)}$$
Examples:
http://web2.0rechner.de/#atan2(1,1) $$\alpha = 45\ \mathrm{degrees} \qquad \text{Quadrant I}$$
http://web2.0rechner.de/#atan2(1,-1) $$\alpha = 135\ \mathrm{degrees} \qquad \text{Quadrant II}$$
http://web2.0calc.com/#atan2(-1,-1) $$\alpha = -135\ \mathrm{degrees} \qquad \text{Quadrant III}$$
http://web2.0rechner.de/#atan2(-1,1) $$\alpha = -45\ \mathrm{degrees} \qquad \text{Quadrant IV}$$
Click the "=" Button in the link