How many numbers are in the list 2008,2003,1998,...8,3
arithmetic sequence:
a1,a2,a3,a4,a5,a6,⋯,an an=a1+(n−1)⋅d or n=1+an−a1d
If the distance between the numbers d=−5 and a1=2008 and an=3 then we find n:
n=1+an−a1dn=1+3−2008(−5)n=1+−2005(−5)n=1+20055n=1+401n=402
There are 402 numbers in the list.
How many numbers are in the list 2008,2003,1998,...8,3
arithmetic sequence:
a1,a2,a3,a4,a5,a6,⋯,an an=a1+(n−1)⋅d or n=1+an−a1d
If the distance between the numbers d=−5 and a1=2008 and an=3 then we find n:
n=1+an−a1dn=1+3−2008(−5)n=1+−2005(−5)n=1+20055n=1+401n=402
There are 402 numbers in the list.