Processing math: 100%
 
+0  
 
0
1640
2
avatar+88 

Please answer

 Apr 14, 2015

Best Answer 

 #2
avatar+118704 
+5

Thanks Heureka,

you don't really need to do all that.

 

(2x+1)12=12r=012Cr(2x)r(1)12r=12r=012Cr(2x)r$Theonlytermwithx6is$12C6(2x)6=12C626x6$Sothecoefficientof$x6is12C626=12C664

 

(12!6!×(126)!)×64=59136

 Apr 15, 2015
 #1
avatar+26396 
+5

Find the coefficient of x^6 in the expansion of (2x+1)^12 

(2x+1)12 =(120)(2x)1210+(121)(2x)1111+(122)(2x)1012+(123)(2x)913+(124)(2x)814+ +(125)(2x)715+(126)(2x)616+(127)(2x)517+(128)(2x)418+ +(129)(2x)319+(1210)(2x)2110+(1211)(2x)1111+(1212)(2x)0112

 

Coefficient of x6 :

 (126)(2x)616=(126)(2x)6=(126)26x6=(126)64x6=92464x6=59136x6 

 

The coefficient of x6 is 59136

 Apr 15, 2015
 #2
avatar+118704 
+5
Best Answer

Thanks Heureka,

you don't really need to do all that.

 

(2x+1)12=12r=012Cr(2x)r(1)12r=12r=012Cr(2x)r$Theonlytermwithx6is$12C6(2x)6=12C626x6$Sothecoefficientof$x6is12C626=12C664

 

(12!6!×(126)!)×64=59136

Melody Apr 15, 2015

1 Online Users