heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26387 
+5

Let 

f(x) = \frac{x^2}{x^2 - 1}.

Find the largest n so that

$$$ f(2)\cdot f(3)\cdot f(4)\cdots f(n-1)\cdot f(n) < 1.98. $$$

$$\boxed{ \small{\text{ $ \prod \limits_{i=2}^{n} \frac{i^2}{i^2-1} < 1.98 $ }} } \qquad \dfrac{i^2}{i^2-1} = \left(\dfrac{i}{i-1} \right) * \left(\dfrac{i}{i+1} \right)
$\\ \\ \\$
\small{\text{
$ \prod \limits_{i=2}^{n} \dfrac{i^2}{i^2-1} =
\prod\limits_{i=2}^{n} \left(\dfrac{i}{i-1} \right) * \left(\dfrac{i}{i+1} \right) = \prod\limits_{i=2}^{n} \left(\dfrac{i}{i-1} \right) * \prod\limits_{i=2}^{n} \left(\dfrac{i}{i+1} \right)
$
}} $\\\\$
\small{\text{
$ =
\left( \frac{2}{2-1} \cdot
\frac{3}{3-1} \cdot \frac{4}{4-1} \cdot \frac{5}{5-1} \dots \frac{n}{n-1}
\right)
\cdot
\left( \frac{2}{2+1} \cdot
\frac{3}{3+1} \cdot \frac{4}{4+1} \cdot \frac{5}{5+1} \dots \frac{n-1}{n} \cdot \frac{n}{n+1}
\right)
$
}} $\\\\$
\small{\text{
$ =
\left( \frac{2}{1} \cdot
\frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \dots \frac{n}{n-1}
\right)
\cdot
\left( \frac{2}{3} \cdot
\frac{3}{4} \cdot \frac{4}{5} \cdot \frac{5}{6} \dots \frac{n-1}{n} \cdot \frac{n}{n+1}
\right)
$
}} $\\\\$
\small{\text{
$ =
\left(
\frac{2}{1} \cdot
\frac{\textcolor[rgb]{1,0,0}{\not{3}} }{ \textcolor[rgb]{0,0,1}{\not{2}} } \cdot
\frac{\textcolor[rgb]{1,0,0}{\not{4}} }{ \textcolor[rgb]{0,0,1}{\not{3}} } \cdot
\frac{\textcolor[rgb]{1,0,0}{\not{5}} }{ \textcolor[rgb]{0,0,1}{\not{4}} } \dots
\frac{\textcolor[rgb]{1,0,0}{\not{n}} }{ \textcolor[rgb]{0,0,1}{\not{n-1}} } \right)
\cdot
\left(
\frac{ \textcolor[rgb]{0,0,1}{\not{2}} }{\textcolor[rgb]{1,0,0}{\not{3}}} \cdot
\frac{ \textcolor[rgb]{0,0,1}{\not{3}} }{\textcolor[rgb]{1,0,0}{\not{4}}} \cdot
\frac{ \textcolor[rgb]{0,0,1}{\not{4}} }{\textcolor[rgb]{1,0,0}{\not{5}}} \cdot
\frac{ \textcolor[rgb]{0,0,1}{\not{5}} }{\textcolor[rgb]{1,0,0}{\not{6}}} \dots
\frac{ \textcolor[rgb]{0,0,1}{\not{n-1}} }{\textcolor[rgb]{1,0,0}{\not{n}} }
\cdot \frac{n}{n+1}
\right)
$
}} $\\\\$
\small{\text{
$ =
\left(
\frac{2}{1} \right)
\cdot
\left(
\frac{n}{n+1}
\right)
$
}} $\\\\$
\boxed{
\small{\text{
$
\left(
\frac{2}{1} \right)
\cdot
\left(
\frac{n}{n+1}
\right) < 1.98
$
}}
} \\\\
\small{\text{$ \dfrac{n}{n+1} < \dfrac{1.98}{2} $ }$ \\\\$
\small{\text{ $ \dfrac{n}{n+1} < 0.99 $ } $\\\\$
\small{\text{ $ n < 0.99 *(n+1) $ }} $\\$
\small{\text{ $ n < 0.99 *n+ 0.99 $ }} $\\$
\small{\text{ $ n - 0.99 *n < 0.99 $ }} $\\$
\small{\text{ $ n *(1 - 0.99) < 0.99 $ }} $\\$$$

$$\\
\small{\text{ $ n * 0.01 < 0.99 $ }} $\\$
\small{\text{ $ n < \frac{ 0.99 } { 0.01 } $ }} $\\$
\small{\text{ $ n < 99 $ }} \\
\boxed{ \small{\text{ $ n = 98 $ }} }$$

.
26.01.2015
 #3
avatar+26387 
+10

Alpha writes the infinite arithmetic sequence10, 8, 6, 4, 2, 0 ,\ldots.

Beta writes the infinite geometric sequence9, 6, 4, \frac{8}{3}, \frac{16}{9}, \ldots.

Gamma makes a sequence whose n^{\text{th}} term is the product of the n^{\text{th}} term of Alpha's sequence and the n^{\text{th}} term of Beta's sequence:10\cdot 9 \quad,\quad 8\cdot 6\quad ,\quad 6\cdot 4\quad,\quad 4\cdot \frac83\quad,\quad 2\cdot \frac{16}{9}\quad,\quad \ldo...

What is the sum of Gamma's entire sequence ?

 

$$\\\small{\text{
Sequence alpha:
$ a_n = a_1 + (n-1)*d = (a_1-d) + n*d
\quad a_1=10$ and $d=8-10=a_{n+1}-a_n=-2$
}}\\
\small{\text{
Sequence beta:
$ b_n = b_1 *r^{n-1} \quad b_1=9$ and $r=\frac{6}{9}=\frac{b_{n+1}}{b_n}=\frac{2}{3}$
}}$\\\\$
\small{\text{
Sequence gamma :
$ g_n = a_n*b_n = b_1 *r^{n-1} [(a_1-d) + n*d]
$
}}\\
\small{\text{
$ \boxed{ g_n = \underbrace{ \left[ b_1(a_1-d) \right] *r^{n-1} }_{sum\ = \dfrac{b_1(a_1-d)}{1-r} } \ +\ b_1d* n r^{n-1} }
$ The sequence of Gamma has two parts.
}}$\\\\$
\small{\text{
The sum of the first part $ \left[ b_1(a_1-d) \right] *r^{n-1} $ is the sum of a geometric sequence $
= \frac{ b_1(a_1-d)}{1-r}
$
}}$\\\\$
\small{\text{
The sum s of the second part $ b_1d* n r^{n-1} $ is:
}} \\
\begin{array}{rcrrrrr}
s & = & (b_1d) * 1 * r^0 +&
(b_1d)* 2 * r^1 \ + &(b_1d) * 3 * r^2 \ +&(b_1d) * 4 * r^3 \ + &(b_1d) * 5 * r^4 \ + \dots \\
r*s & = & & (b_1d)* 1 * r^1 \ + &(b_1d) * 2 * r^2 \ +&(b_1d) * 3 * r^3 \ + &(b_1d) * 4 * r^4 \ + \dots \\
\hline
s-r*s & = & (b_1*d) \ + & (b_1d)*r^1 \ + &(b_1d)*r^2 \ +&(b_1d)*r^3 \ +&(b_1d)*r^4 \ + \dots \\
\end{array}\\
\small{\text{
$
s-r*s = \underbrace{ (b_1*d) \ + (b_1d)*r^1 \ + (b_1d)*r^2 \ +(b_1d)*r^3 \ +(b_1d)*r^4 \ + \dots }_{\text{sum of a geometric sequence }\ = \frac{b_1d}{1-r} }
$
} $\\$
\small{\text{
$
s-r*s = \frac{b_1d}{1-r}
$
}}$\\$
\small{\text{
$
s(1-r) = \frac{b_1d}{1-r}
$
}}$\\\\$
\small{\text{
$
s = \dfrac{b_1d}{(1-r)^2}
$
}}$\\\\$
\small{\text{
The sum of Gamma's sequence
$ = \dfrac{b_1(a_1-d)}{1-r} \ + \dfrac{b_1d}{(1-r)^2}
$
}}$\\\\$
\small{\text{
$ = \left( \dfrac{b_1}{1-r} \right) * \left[ (a_1-d)+\dfrac{d}{(1-r)} \right]
$
}}$$

$$\small{\text{
The sum of Gamma's sequence
$ = \left(
\dfrac{ 9 }{ 1 - \frac{2}{3} }
\right) *
\left[ (10-(-2))+ \dfrac{ (-2) } { 1 - \frac{2}{3} }
\right] $
}}\\
\small{\text{
$ = 9*3 *(12-2*3) = 27*6 = 162
$
}}$$

.
26.01.2015