Alpha writes the infinite arithmetic sequence
Beta writes the infinite geometric sequence
Gamma makes a sequence whose term is the product of the term of Alpha's sequence and the term of Beta's sequence:
What is the sum of Gamma's entire sequence ?
$$\\\small{\text{
Sequence alpha:
$ a_n = a_1 + (n-1)*d = (a_1-d) + n*d
\quad a_1=10$ and $d=8-10=a_{n+1}-a_n=-2$
}}\\
\small{\text{
Sequence beta:
$ b_n = b_1 *r^{n-1} \quad b_1=9$ and $r=\frac{6}{9}=\frac{b_{n+1}}{b_n}=\frac{2}{3}$
}}$\\\\$
\small{\text{
Sequence gamma :
$ g_n = a_n*b_n = b_1 *r^{n-1} [(a_1-d) + n*d]
$
}}\\
\small{\text{
$ \boxed{ g_n = \underbrace{ \left[ b_1(a_1-d) \right] *r^{n-1} }_{sum\ = \dfrac{b_1(a_1-d)}{1-r} } \ +\ b_1d* n r^{n-1} }
$ The sequence of Gamma has two parts.
}}$\\\\$
\small{\text{
The sum of the first part $ \left[ b_1(a_1-d) \right] *r^{n-1} $ is the sum of a geometric sequence $
= \frac{ b_1(a_1-d)}{1-r}
$
}}$\\\\$
\small{\text{
The sum s of the second part $ b_1d* n r^{n-1} $ is:
}} \\
\begin{array}{rcrrrrr}
s & = & (b_1d) * 1 * r^0 +&
(b_1d)* 2 * r^1 \ + &(b_1d) * 3 * r^2 \ +&(b_1d) * 4 * r^3 \ + &(b_1d) * 5 * r^4 \ + \dots \\
r*s & = & & (b_1d)* 1 * r^1 \ + &(b_1d) * 2 * r^2 \ +&(b_1d) * 3 * r^3 \ + &(b_1d) * 4 * r^4 \ + \dots \\
\hline
s-r*s & = & (b_1*d) \ + & (b_1d)*r^1 \ + &(b_1d)*r^2 \ +&(b_1d)*r^3 \ +&(b_1d)*r^4 \ + \dots \\
\end{array}\\
\small{\text{
$
s-r*s = \underbrace{ (b_1*d) \ + (b_1d)*r^1 \ + (b_1d)*r^2 \ +(b_1d)*r^3 \ +(b_1d)*r^4 \ + \dots }_{\text{sum of a geometric sequence }\ = \frac{b_1d}{1-r} }
$
} $\\$
\small{\text{
$
s-r*s = \frac{b_1d}{1-r}
$
}}$\\$
\small{\text{
$
s(1-r) = \frac{b_1d}{1-r}
$
}}$\\\\$
\small{\text{
$
s = \dfrac{b_1d}{(1-r)^2}
$
}}$\\\\$
\small{\text{
The sum of Gamma's sequence
$ = \dfrac{b_1(a_1-d)}{1-r} \ + \dfrac{b_1d}{(1-r)^2}
$
}}$\\\\$
\small{\text{
$ = \left( \dfrac{b_1}{1-r} \right) * \left[ (a_1-d)+\dfrac{d}{(1-r)} \right]
$
}}$$
$$\small{\text{
The sum of Gamma's sequence
$ = \left(
\dfrac{ 9 }{ 1 - \frac{2}{3} }
\right) *
\left[ (10-(-2))+ \dfrac{ (-2) } { 1 - \frac{2}{3} }
\right] $
}}\\
\small{\text{
$ = 9*3 *(12-2*3) = 27*6 = 162
$
}}$$