heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #5
avatar+26387 
+5

Welche Längenabmessungen hat ein Blatt DIN A4

$$\small{\text{
(1) \quad x_0y_0=1\ m^2, \quad \boxed{y_0 = \dfrac{1}{x_0}}
\qquad (2) \quad \dfrac{x_0}{y_0}=\dfrac{\dfrac{y_0}{2}}{x_0}=\dfrac{y_0}{2x_0}, \quad \left(\dfrac{x_0}{y_0} \right)^2=\dfrac{1}{2}, \quad \boxed{\dfrac{x_0}{y_0}=\dfrac{1}{\sqrt{2}} }
$
}}$$

$$\small{\text{
Din A0:
$
\boxed{y_0 = \dfrac{1}{x_0}}, \quad
\boxed{\dfrac{x_0}{y_0}=\dfrac{1}{\sqrt{2}} },
\quad \dfrac{x_0}{\dfrac{1}{x_0}}=\dfrac{1}{\sqrt{2}},
\quad x_0^2=\dfrac{1}{\sqrt{2}},
$
}}\\
\small{\text{
$
x_0 = \dfrac{1}{\sqrt{\sqrt{2}}} = 2^{-\frac{1}{4}}=0,8409\ m
$
}}\\
\small{\text{
$
y_0 = \dfrac{1}{x_0} = 2^{\frac{1}{4}}=1,1892\ m
$
}}$$

$$\small{\text{
Din A1:
}}\\
\small{\text{
$
x_1 = \dfrac{y_0}{2} = 2^{\frac{1}{4}-1}= 2^{-\frac{3}{4}} = 0,5946\ m
$
}}\\
\small{\text{
$
y_1 = x_0 = 2^{-\frac{1}{4}}=0,8409\ m
$
}}$$

$$\small{\text{
Din A2:
}}\\
\small{\text{
$
x_2 = \dfrac{y_1}{2} = 2^{-\frac{1}{4}-1}= 2^{-\frac{5}{4}} = 0,4204\ m
$
}}\\
\small{\text{
$
y_2 = x_1 = 2^{-\frac{3}{4}}=0,5946\ m
$
}}$$

$$\small{\text{
Din A3:
}}\\
\small{\text{
$
x_3 = \dfrac{y_2}{2} = 2^{-\frac{3}{4}-1}= 2^{-\frac{7}{4}} = 0,2973\ m
$
}}\\
\small{\text{
$
y_3 = x_2 = 2^{-\frac{5}{4}}=0,4204\ m
$
}}$$

$$\small{\text{
Din A4:
}}\\
\small{\text{
$
x_4 = \dfrac{y_3}{2} = 2^{-\frac{5}{4}-1}= 2^{-\frac{9}{4}} = 0,2102\ m
$
}}\\
\small{\text{
$
y_4 = x_3 = 2^{-\frac{7}{4}}=0,2973\ m
$
}}$$

 

P.S.

$$\small{\text{
F$\ddot{u}$r x und y haben wir jeweils eine geometrische Reihe:
}}\\
\small{\text{
F$\ddot{u}$r x gilt $
x_n = 2^{-\frac{1}{4}}* \left( 2^{-\frac{1}{2} } \right)^n
$
das kann ausgearbeitet werden zu:
$
x_n = 2^{ -(\frac{2n+1}{4}) }
$
}}\\
\small{\text{
F$\ddot{u}$r y gilt $
y_n = 2^{\frac{1}{4}}* \left( 2^{-\frac{1}{2} } \right)^n
$
das kann ausgearbeitet werden zu:
$
y_n = 2^{ -(\frac{2n-1}{4}) }
$
}}$$

.
28.01.2015
 #18
avatar+26387 
+5

                                          +

                                          |   .      +

                                          |      .            +

                                 x/2    |          .                +

                                          |            r                      +

                                          |                .                         +

                                          |           60      .                              +

            arc     (<----r/2---->+<----r/2----> C <------------r--------->) arc

                       <-      h   -> | <-   r - h    ->                            +

                                          |                                          +

                                          |                                   +

                              x/2       |                            +

                                          |                     +

                                          |            +

                                          |      +

                                          +

28.01.2015