How did you get from [b1(a1 - d)]*rn-1 to [b1(a1 - d)] / (1 - r) ???
Hi CPhill,
first i tell you about der geometric sequence of beta:
\small{\text{ The geometric sequence is $ b_1 = \underbrace{9*(\frac{2}{3})^0}_{=9}, \ b_2 = \underbrace{9*(\frac{2}{3})^1}_{=6}, \ b_3 = \underbrace{9*(\frac{2}{3})^2}_{=4}, \ b_4 = \underbrace{9*(\frac{2}{3})^3}_{=\frac{8}{3}}, \ \dots \ ,\ b_n = 9*(\frac{2}{3})^{n-1} $ }} \\ \small{\text{ The sum $s=\frac{9}{1-\frac{2}{3}}$\ , now we set $\ b_1 = 9 $ and $\ r = \frac{2}{3} $ and see why }}\\\\ \small{\text{ b_1 = b_1, \ b_2 = b_1 r, \ b_3 = b_1r^2, \ b_4 = b_1r^3, \ \dots \ ,\ b_n = b_1r^{n-1} $ }} \\ \small{\text{ The sum is $ s = b_1 + b_1 r + b_1r^2 + b_1*r^3 + b_1r^4 + \ \dots $ }} \\ \small{\text{ $ \begin{array}{rcll} \hline s &=& b_1 \ + & b_1 r + b_1r^2 + b_1*r^3 + b_1r^4 + \ \dots \\ rs &=& & b_1 r + b_1r^2 + b_1*r^3 + b_1r^4 + \ \dots \\ \hline s-rs &=& b_1 & + 0 + 0 + 0 + 0 +\dots \\ s(1-r) &=& b_1 & \\ s &=& \dfrac{b_1}{1-r} & \end{array} $ }} \\ \boxed{ \small{\text{ So, if we have a Geometric Sequence $ b_n = b_1r^{n-1} $ the infinite sum $ s = \dfrac{b_1}{1-r} $ }} }
Now we look to Gamma Sequence. There is a constant: b1(a1−d)=g1:
\boxed{ \small{\text{ The Geometric Sequence Gamma first part is $ g_{n_{First Part}} = g_1r^{n-1} $ the infinite sum $ s = \dfrac{g_1}{1-r} $ }} }\\\\ \small{\text{ $ s = \dfrac{g_1}{1-r} =\dfrac{b_1(a_1-d)}{1-r}$ }}\\\\ \small{\text{ set $ b_1 = 9, \ a_1 = 10,\ d = -2, \ r =\frac{2}{3} $ }}\\ \small{\text{ we have the sum of Gamma Sequence first part: }}\\ \small{\text{ $ 108*(\frac{2}{3})^0 + 108*(\frac{2}{3})^1 + 108*(\frac{2}{3})^2 +108*(\frac{2}{3})^3 + \dots $ }} \\ \small{\text{ and the infinite sum $s = \frac{108}{1-\frac{2}{3}}$ and $g_{1_{first part}}=108,\ g_{2_{first part}}=108*\frac{2}{3}, \ \dots \ ,\ g_{n_{first part}}=108*(\frac{2}{3})^{n-1} $ }}\\
P.S.
\\\small{\text{ The finite sum: $ s_n=a_1 + a_1\cdot r + a_1\cdot r^2 + a_1\cdot r^3 + \dots +a_1\cdot r^{n-1} $ is $ s_n = \dfrac{a_1(1-r^n)}{1-r} $ }}\\\\ \small{\text{ The infinite sum: $ s_n=a_1 + a_1\cdot r + a_1\cdot r^2 + a_1\cdot r^3 +a_1\cdot r^4 \dots $ }}\\\\ \small{\text{ with $ s_n = \dfrac{a_1(1-r^n)}{1-r} $ is $s=\lim\limits_{n\to \infty} s_n = \dfrac{a_1}{1-r}$,}}\\\\ \small{\text{ if $\quad -1 }}

.