10,8,6, AP a=10 d=-2 Tn=a+(n-1)d
Tn+1=a+nd=10−2n (I have changed n to start at 0)
9,6,4,...... GP a=9 r=2/3 Tn=ar^(n-1)
Tn+1=arnTn+1=9∗(23)n
Sum of Gamma's Sequence
S∞=∞∑0(10−2n)∗9∗2n3nS∞=∞∑090∗2n3n−∞∑0(18n)∗2n3nS∞=90∗∞∑02n3n−18∞∑0n∗2n3n
NOW∞∑02n3n=∞∑0(23)n$ThisisaGPa=1r=2/3$=a1−r=11−23=113=3
S∞=90∗∞∑02n3n−18∞∑0n∗2n3nS∞=90∗3−18∞∑0n∗2n3nS∞=270−18∞∑0n∗2n3n
Here I cheated a little and used Wolfram|Alpha to solve the second sum. The answer is 6
The hyperlink is below
Wolfram|Alpha Second sum solution
S∞=270−18∞∑0n∗2n3nS∞=270−18∗6S∞=270−108S∞=162
If another mathematician can explain to me how to do the second sum solution that would be good.
Ie Why does
∞∑n→0n∗2n3n=6?
Thank you
Alpha writes the infinite arithmetic sequence
Beta writes the infinite geometric sequence
Gamma makes a sequence whose term is the product of the
term of Alpha's sequence and the
term of Beta's sequence:
What is the sum of Gamma's entire sequence ?
\\\small{\text{ Sequence alpha: $ a_n = a_1 + (n-1)*d = (a_1-d) + n*d \quad a_1=10$ and $d=8-10=a_{n+1}-a_n=-2$ }}\\ \small{\text{ Sequence beta: $ b_n = b_1 *r^{n-1} \quad b_1=9$ and $r=\frac{6}{9}=\frac{b_{n+1}}{b_n}=\frac{2}{3}$ }}$\\\\$ \small{\text{ Sequence gamma : $ g_n = a_n*b_n = b_1 *r^{n-1} [(a_1-d) + n*d] $ }}\\ \small{\text{ $ \boxed{ g_n = \underbrace{ \left[ b_1(a_1-d) \right] *r^{n-1} }_{sum\ = \dfrac{b_1(a_1-d)}{1-r} } \ +\ b_1d* n r^{n-1} } $ The sequence of Gamma has two parts. }}$\\\\$ \small{\text{ The sum of the first part $ \left[ b_1(a_1-d) \right] *r^{n-1} $ is the sum of a geometric sequence $ = \frac{ b_1(a_1-d)}{1-r} $ }}$\\\\$ \small{\text{ The sum s of the second part $ b_1d* n r^{n-1} $ is: }} \\ \begin{array}{rcrrrrr} s & = & (b_1d) * 1 * r^0 +& (b_1d)* 2 * r^1 \ + &(b_1d) * 3 * r^2 \ +&(b_1d) * 4 * r^3 \ + &(b_1d) * 5 * r^4 \ + \dots \\ r*s & = & & (b_1d)* 1 * r^1 \ + &(b_1d) * 2 * r^2 \ +&(b_1d) * 3 * r^3 \ + &(b_1d) * 4 * r^4 \ + \dots \\ \hline s-r*s & = & (b_1*d) \ + & (b_1d)*r^1 \ + &(b_1d)*r^2 \ +&(b_1d)*r^3 \ +&(b_1d)*r^4 \ + \dots \\ \end{array}\\ \small{\text{ $ s-r*s = \underbrace{ (b_1*d) \ + (b_1d)*r^1 \ + (b_1d)*r^2 \ +(b_1d)*r^3 \ +(b_1d)*r^4 \ + \dots }_{\text{sum of a geometric sequence }\ = \frac{b_1d}{1-r} } $ } $\\$ \small{\text{ $ s-r*s = \frac{b_1d}{1-r} $ }}$\\$ \small{\text{ $ s(1-r) = \frac{b_1d}{1-r} $ }}$\\\\$ \small{\text{ $ s = \dfrac{b_1d}{(1-r)^2} $ }}$\\\\$ \small{\text{ The sum of Gamma's sequence $ = \dfrac{b_1(a_1-d)}{1-r} \ + \dfrac{b_1d}{(1-r)^2} $ }}$\\\\$ \small{\text{ $ = \left( \dfrac{b_1}{1-r} \right) * \left[ (a_1-d)+\dfrac{d}{(1-r)} \right] $ }}
The sum of Gamma's sequence =(91−23)∗[(10−(−2))+(−2)1−23] =9∗3∗(12−2∗3)=27∗6=162
How about the following:
Perhaps I should clarify a step: Note that n*rn = r*n*rn-1= r*d(rn)/dr (or perhaps this just muddies the waters - in which case ignore it!)
.
.
Heureka....I'm trying to learn more about how to manipulate these series questions....I followed everything except for this.....
How did you get from [b1(a1 - d)]*rn-1 to [b1(a1 - d)] / (1 - r) ???
Thanks in advance.....
How did you get from [b1(a1 - d)]*rn-1 to [b1(a1 - d)] / (1 - r) ???
Hi CPhill,
first i tell you about der geometric sequence of beta:
\small{\text{ The geometric sequence is $ b_1 = \underbrace{9*(\frac{2}{3})^0}_{=9}, \ b_2 = \underbrace{9*(\frac{2}{3})^1}_{=6}, \ b_3 = \underbrace{9*(\frac{2}{3})^2}_{=4}, \ b_4 = \underbrace{9*(\frac{2}{3})^3}_{=\frac{8}{3}}, \ \dots \ ,\ b_n = 9*(\frac{2}{3})^{n-1} $ }} \\ \small{\text{ The sum $s=\frac{9}{1-\frac{2}{3}}$\ , now we set $\ b_1 = 9 $ and $\ r = \frac{2}{3} $ and see why }}\\\\ \small{\text{ b_1 = b_1, \ b_2 = b_1 r, \ b_3 = b_1r^2, \ b_4 = b_1r^3, \ \dots \ ,\ b_n = b_1r^{n-1} $ }} \\ \small{\text{ The sum is $ s = b_1 + b_1 r + b_1r^2 + b_1*r^3 + b_1r^4 + \ \dots $ }} \\ \small{\text{ $ \begin{array}{rcll} \hline s &=& b_1 \ + & b_1 r + b_1r^2 + b_1*r^3 + b_1r^4 + \ \dots \\ rs &=& & b_1 r + b_1r^2 + b_1*r^3 + b_1r^4 + \ \dots \\ \hline s-rs &=& b_1 & + 0 + 0 + 0 + 0 +\dots \\ s(1-r) &=& b_1 & \\ s &=& \dfrac{b_1}{1-r} & \end{array} $ }} \\ \boxed{ \small{\text{ So, if we have a Geometric Sequence $ b_n = b_1r^{n-1} $ the infinite sum $ s = \dfrac{b_1}{1-r} $ }} }
Now we look to Gamma Sequence. There is a constant: b1(a1−d)=g1:
\boxed{ \small{\text{ The Geometric Sequence Gamma first part is $ g_{n_{First Part}} = g_1r^{n-1} $ the infinite sum $ s = \dfrac{g_1}{1-r} $ }} }\\\\ \small{\text{ $ s = \dfrac{g_1}{1-r} =\dfrac{b_1(a_1-d)}{1-r}$ }}\\\\ \small{\text{ set $ b_1 = 9, \ a_1 = 10,\ d = -2, \ r =\frac{2}{3} $ }}\\ \small{\text{ we have the sum of Gamma Sequence first part: }}\\ \small{\text{ $ 108*(\frac{2}{3})^0 + 108*(\frac{2}{3})^1 + 108*(\frac{2}{3})^2 +108*(\frac{2}{3})^3 + \dots $ }} \\ \small{\text{ and the infinite sum $s = \frac{108}{1-\frac{2}{3}}$ and $g_{1_{first part}}=108,\ g_{2_{first part}}=108*\frac{2}{3}, \ \dots \ ,\ g_{n_{first part}}=108*(\frac{2}{3})^{n-1} $ }}\\
P.S.
\\\small{\text{ The finite sum: $ s_n=a_1 + a_1\cdot r + a_1\cdot r^2 + a_1\cdot r^3 + \dots +a_1\cdot r^{n-1} $ is $ s_n = \dfrac{a_1(1-r^n)}{1-r} $ }}\\\\ \small{\text{ The infinite sum: $ s_n=a_1 + a_1\cdot r + a_1\cdot r^2 + a_1\cdot r^3 +a_1\cdot r^4 \dots $ }}\\\\ \small{\text{ with $ s_n = \dfrac{a_1(1-r^n)}{1-r} $ is $s=\lim\limits_{n\to \infty} s_n = \dfrac{a_1}{1-r}$,}}\\\\ \small{\text{ if $\quad -1 }}