Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1
6279
8
avatar

Alpha writes the infinite arithmetic sequence10, 8, 6, 4, 2, 0 ,\ldots.Beta writes the infinite geometric sequence9, 6, 4, \frac{8}{3}, \frac{16}{9}, \ldots.Gamma makes a sequence whose n^{\text{th}} term is the product of the n^{\text{th}} term of Alpha's sequence and the n^{\text{th}} term of Beta's sequence:10\cdot 9 \quad,\quad 8\cdot 6\quad ,\quad 6\cdot 4\quad,\quad 4\cdot \frac83\quad,\quad 2\cdot \frac{16}{9}\quad,\quad \ldo...What is the sum of Gamma's entire sequence?

 Jan 25, 2015

Best Answer 

 #4
avatar+33654 
+10

How about the following:

 

summations

 

Perhaps I should clarify a step:  Note that n*rn = r*n*rn-1= r*d(rn)/dr  (or perhaps this just muddies the waters - in which case ignore it!)

.

.

 Jan 26, 2015
 #1
avatar+118703 
+7

10,8,6,       AP    a=10   d=-2      Tn=a+(n-1)d

 

Tn+1=a+nd=102n   (I have changed n to start at 0)

 

9,6,4,......    GP   a=9     r=2/3       Tn=ar^(n-1)

 

Tn+1=arnTn+1=9(23)n

 

Sum of Gamma's Sequence

 

S=0(102n)92n3nS=0902n3n0(18n)2n3nS=9002n3n180n2n3n

 

     NOW02n3n=0(23)n$ThisisaGPa=1r=2/3$=a1r=1123=113=3

 

S=9002n3n180n2n3nS=903180n2n3nS=270180n2n3n

 

Here I cheated a little and used Wolfram|Alpha to solve the second sum.  The answer is 6

The hyperlink is below    

Wolfram|Alpha Second sum solution

 

S=270180n2n3nS=270186S=270108S=162

 Jan 26, 2015
 #2
avatar+118703 
0

If another mathematician can explain to me how to do the second sum solution that would be good.

 

Ie      Why does

 n0n2n3n=6?

 

Thank you     

 Jan 26, 2015
 #3
avatar+26396 
+10

Alpha writes the infinite arithmetic sequence10, 8, 6, 4, 2, 0 ,\ldots.

Beta writes the infinite geometric sequence9, 6, 4, \frac{8}{3}, \frac{16}{9}, \ldots.

Gamma makes a sequence whose n^{\text{th}} term is the product of the n^{\text{th}} term of Alpha's sequence and the n^{\text{th}} term of Beta's sequence:10\cdot 9 \quad,\quad 8\cdot 6\quad ,\quad 6\cdot 4\quad,\quad 4\cdot \frac83\quad,\quad 2\cdot \frac{16}{9}\quad,\quad \ldo...

What is the sum of Gamma's entire sequence ?

 

\\\small{\text{  Sequence alpha: $ a_n = a_1 + (n-1)*d = (a_1-d) + n*d \quad a_1=10$ and $d=8-10=a_{n+1}-a_n=-2$  }}\\ \small{\text{ Sequence beta: $ b_n = b_1 *r^{n-1} \quad b_1=9$ and $r=\frac{6}{9}=\frac{b_{n+1}}{b_n}=\frac{2}{3}$  }}$\\\\$ \small{\text{ Sequence gamma : $ g_n = a_n*b_n = b_1 *r^{n-1} [(a_1-d) + n*d] $  }}\\ \small{\text{ $ \boxed{ g_n = \underbrace{ \left[ b_1(a_1-d) \right] *r^{n-1} }_{sum\ = \dfrac{b_1(a_1-d)}{1-r} } \ +\ b_1d* n r^{n-1} } $ The sequence of Gamma has two parts.  }}$\\\\$  \small{\text{  The sum of the first part $ \left[ b_1(a_1-d) \right] *r^{n-1} $ is the sum of a geometric sequence $  = \frac{ b_1(a_1-d)}{1-r} $ }}$\\\\$  \small{\text{  The sum s of the second part $ b_1d* n r^{n-1} $ is: }} \\ \begin{array}{rcrrrrr} s & = & (b_1d) * 1 * r^0 +& (b_1d)* 2 * r^1 \ + &(b_1d) * 3 * r^2 \ +&(b_1d) * 4 * r^3 \ + &(b_1d) * 5 * r^4 \ + \dots \\ r*s & = & & (b_1d)* 1 * r^1 \ + &(b_1d) * 2 * r^2 \ +&(b_1d) * 3 * r^3 \ + &(b_1d) * 4 * r^4 \ + \dots \\ \hline s-r*s & = & (b_1*d) \ + & (b_1d)*r^1 \ + &(b_1d)*r^2 \ +&(b_1d)*r^3 \ +&(b_1d)*r^4 \ + \dots \\ \end{array}\\ \small{\text{ $ s-r*s = \underbrace{ (b_1*d) \ + (b_1d)*r^1 \ + (b_1d)*r^2 \ +(b_1d)*r^3 \ +(b_1d)*r^4 \ + \dots }_{\text{sum of a geometric sequence }\ = \frac{b_1d}{1-r} } $ } $\\$ \small{\text{ $ s-r*s = \frac{b_1d}{1-r} $ }}$\\$ \small{\text{ $ s(1-r) = \frac{b_1d}{1-r} $ }}$\\\\$ \small{\text{ $ s = \dfrac{b_1d}{(1-r)^2} $ }}$\\\\$ \small{\text{ The sum of Gamma's sequence  $ = \dfrac{b_1(a_1-d)}{1-r} \ + \dfrac{b_1d}{(1-r)^2} $  }}$\\\\$  \small{\text{ $ = \left( \dfrac{b_1}{1-r} \right) * \left[ (a_1-d)+\dfrac{d}{(1-r)} \right] $ }}

 The sum of Gamma's sequence =(9123)[(10(2))+(2)123]  =93(1223)=276=162 

 Jan 26, 2015
 #4
avatar+33654 
+10
Best Answer

How about the following:

 

summations

 

Perhaps I should clarify a step:  Note that n*rn = r*n*rn-1= r*d(rn)/dr  (or perhaps this just muddies the waters - in which case ignore it!)

.

.

Alan Jan 26, 2015
 #5
avatar+118703 
0

Thanks Guys! 

 Jan 27, 2015
 #6
avatar+130466 
0

Heureka....I'm trying to learn more about how to manipulate these series questions....I followed everything except for this.....

How did you get from [b1(a1 - d)]*rn-1    to     [b1(a1 - d)] / (1 - r)    ???

Thanks in advance.....

 

 Jan 27, 2015
 #7
avatar+26396 
+5

How did you get from [b1(a1 - d)]*rn-1    to     [b1(a1 - d)] / (1 - r)    ???

Hi CPhill,

first i tell you about der geometric sequence of beta:

\small{\text{  The geometric sequence is  $ b_1 = \underbrace{9*(\frac{2}{3})^0}_{=9}, \ b_2 = \underbrace{9*(\frac{2}{3})^1}_{=6}, \ b_3 = \underbrace{9*(\frac{2}{3})^2}_{=4}, \ b_4 = \underbrace{9*(\frac{2}{3})^3}_{=\frac{8}{3}}, \ \dots \ ,\ b_n = 9*(\frac{2}{3})^{n-1}  $  }} \\  \small{\text{  The sum $s=\frac{9}{1-\frac{2}{3}}$\ , now we set $\ b_1 = 9 $ and $\ r = \frac{2}{3}  $ and see why }}\\\\ \small{\text{  b_1 = b_1, \ b_2 = b_1 r, \ b_3 = b_1r^2, \ b_4 = b_1r^3, \ \dots \ ,\ b_n = b_1r^{n-1}  $  }} \\ \small{\text{  The sum is  $ s = b_1 + b_1 r + b_1r^2 + b_1*r^3 + b_1r^4 + \ \dots $  }} \\ \small{\text{  $ \begin{array}{rcll} \hline s &=& b_1 \ + & b_1 r + b_1r^2 + b_1*r^3 + b_1r^4 + \ \dots \\ rs &=& & b_1 r + b_1r^2 + b_1*r^3 + b_1r^4 + \ \dots \\ \hline s-rs &=& b_1 & + 0 + 0 + 0 + 0 +\dots \\ s(1-r) &=& b_1 & \\ s &=& \dfrac{b_1}{1-r} & \end{array}  $  }} \\ \boxed{ \small{\text{ So, if we have a Geometric Sequence $ b_n = b_1r^{n-1} $ the infinite sum $ s = \dfrac{b_1}{1-r} $  }} }

 

Now we look to Gamma Sequence.  There is a constant:    b1(a1d)=g1

  \boxed{ \small{\text{ The Geometric Sequence Gamma first part is $ g_{n_{First Part}} = g_1r^{n-1} $ the infinite sum $ s = \dfrac{g_1}{1-r} $  }}  }\\\\ \small{\text{ $ s = \dfrac{g_1}{1-r} =\dfrac{b_1(a_1-d)}{1-r}$ }}\\\\ \small{\text{ set $ b_1 = 9, \ a_1 = 10,\ d = -2, \ r =\frac{2}{3} $ }}\\ \small{\text{ we have the sum of Gamma Sequence first part: }}\\ \small{\text{ $ 108*(\frac{2}{3})^0 + 108*(\frac{2}{3})^1 + 108*(\frac{2}{3})^2 +108*(\frac{2}{3})^3 + \dots $ }} \\  \small{\text{ and the infinite sum $s = \frac{108}{1-\frac{2}{3}}$  and $g_{1_{first part}}=108,\ g_{2_{first part}}=108*\frac{2}{3}, \ \dots \ ,\ g_{n_{first part}}=108*(\frac{2}{3})^{n-1} $  }}\\

P.S.

\\\small{\text{ The finite sum:  $ s_n=a_1 + a_1\cdot r + a_1\cdot r^2 + a_1\cdot r^3 + \dots +a_1\cdot r^{n-1} $  is $ s_n = \dfrac{a_1(1-r^n)}{1-r} $ }}\\\\ \small{\text{ The infinite sum:  $ s_n=a_1 + a_1\cdot r + a_1\cdot r^2 + a_1\cdot r^3 +a_1\cdot r^4 \dots  $  }}\\\\ \small{\text{ with $  s_n = \dfrac{a_1(1-r^n)}{1-r} $ is $s=\lim\limits_{n\to \infty} s_n = \dfrac{a_1}{1-r}$,}}\\\\ \small{\text{ if $\quad -1 }}

 Jan 27, 2015
 #8
avatar+118703 
0

Thanks Heureka  

 Jan 28, 2015

0 Online Users