Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+2
2521
4
avatar

Evaluate the infinite geometric series 0.79 + 0.079 + 0.0079 + 0.00079 + 0.000079 + \dotsb. Express your answer as a fraction.

 Jan 24, 2015

Best Answer 

 #3
avatar+26396 
+13

 The fraction is 7990

.
 Jan 24, 2015
 #1
avatar+26396 
+12

sum  s=(7.9101)=a+(7.9101)101+(7.9101)102+(7.9101)103++(7.9101)10(n1) $$ r=(7.9101)101(7.9101)=101 $$ s=a1r=(7.9101)1101 $$ s=(7.9101)1101101101 $$ s=7.91011=7.99 $$ s=7.99=0.87777777777777777777777777¯7=0.8¯7 

.
 Jan 24, 2015
 #2
avatar
+6

sorry, but what is the fraction for this?

 Jan 24, 2015
 #3
avatar+26396 
+13
Best Answer

 The fraction is 7990

heureka Jan 24, 2015
 #4
avatar
+1

thank you so much Heureka!

 Jan 25, 2015

3 Online Users

avatar
avatar