Part (a): Find the sum s = in terms of
and
s=a+(a+1)+(a+2)+(a+3)+...+(a+(n−2))+(a+(n−1))s=[a+(a+(n−1))]∗(n2)s=[2a+(n−1))]∗(n2)s=n∗a+n(n−1)2
Part (b): Find all pairs of positive integers such that
and
2≤n≤14 and a>0 n=2a=49.500000 n=3a=32.333333 $$ n=4a=23.500000 $$ n=5a=18.000000 $$ n=6a=14.166667 $$ n=7a=11.285714 $$ n=8a=9.000000 $$ n=9a=7.111111 $$ n=10a=5.500000 $$ n=11a=4.090909 $$ n=12a=2.833333 $$ n=13a=1.692308 $$ n=14a=0.642857 $$ The only 2 solutions for (a,n) are (18,5), (9,8) $$ 18+19+20+21+22=100 and 9+10+11+12+13+14+15+16=100
Let ,
, . . . ,
be an arithmetic sequence. If
1. arithmetic sequence: a1,a2,a3,a4,a5,a6,a7,a8,a9,a10 $$ an=a1+(n−1)∗d and sn=n2∗[2a1∗(n−1)d] ⇒s10=17+15=102∗[2a1+(10−1)d] $$ 32=5∗(2a1+9d) $$ (1)32=10a1+45d
2. arithmetic sequence:
a1,a3,a5,a7,a9 $$ ai=a1+(i−1)∗(2d) and si=i2∗[2a1∗(i−1)(2d)] ⇒s5=17=52∗[2a1+(5−1)(2d)] $$ 2∗17=5∗(2a1+8d) $$ (2)34=10a1+40d
(1) - (2): 32−34=10a1−10a1+45d−40d=5d−2=5dd=−25
d into (2): 34=10a1+40∗(−25)=10a1−1610a1=50a1=5