Part (a): Find the sum s = in terms of and
$$s = a + (a+1) + ( a+2) + (a+3) + ... +(a+ (n-2)) + (a+(n-1))\\\\
s = \left[a + (a+(n-1))\right] *(\frac{n}{2} ) \\\\
s = \left[2a+(n-1))\right]*(\frac{n}{2} ) \\\\
\boxed{s = n*a+\frac{n(n-1)}{2}}$$
Part (b): Find all pairs of positive integers such that and
$$\small{\text{$ 2\le n\le14 \text{ and } a > 0 $}}\\
\small{\text{
$ n= 2\quad a=49.500000 $ }} \\ \small{\text{
$ n= 3\quad a=32.333333 $ }} $\\$ \small{\text{
$ n= 4\quad a=23.500000 $ }} $\\$ \small{\text{
$\textcolor[rgb]{1,0,0}{n= 5\quad a=18.000000} $ }} $\\$ \small{\text{
$ n= 6\quad a=14.166667 $ }} $\\$ \small{\text{
$ n= 7\quad a=11.285714 $ }} $\\$ \small{\text{
$ \textcolor[rgb]{1,0,0}{n= 8\quad a=9.000000 }$ }} $\\$ \small{\text{
$n= 9\quad a=7.111111 $ }} $\\$ \small{\text{
$n=10\quad a=5.500000 $ }} $\\$ \small{\text{
$n=11\quad a=4.090909 $ }} $\\$ \small{\text{
$n=12\quad a=2.833333 $ }} $\\$ \small{\text{
$n=13\quad a=1.692308 $ }} $\\$ \small{\text{
$n=14\quad a=0.642857 $ }} $\\$ \small{\text{
The only 2 solutions for $(a,n)$ are $ (18,5),\ (9,8)$
}} $\\$
\small{\text{
$
\textcolor[rgb]{1,0,0}{18}+19+20+21+22 = 100 \quad $ and $\quad \textcolor[rgb]{1,0,0}{9}+10+11+12+13+14+15+16 = 100
$
}}$$
Let , , . . . , be an arithmetic sequence. If
1. arithmetic sequence: $$\small{\text{
$
a_1, a_2,a_3,a_4,a_5,a_6,a_7,a_8,a_9,a_{10}
$
}}$\\$
\small{\text{
$
a_n=a_1+(n-1)*d $ and
$
s_n= \frac{n}{2}*[2a_1*(n-1)d]
$
}}
\small{\text{
$
\Rightarrow s_{10}= 17+15 = \frac{10}{2}*[2a_1+(10-1)d]
$
}} $\\$
\small{\text{
$
32 = 5*(2a_1+9d)
$
}} $\\$
\small{\text{
$
\textcolor[rgb]{0,0,1}{(1) \quad 32 = 10a_1+45d}
$
}}$$
2. arithmetic sequence:
$$\small{\text{
$
a_1,a_3,a_5,a_7,a_9$
}}$\\$
\small{\text{
$
a_i=a_1+(i-1)*(2d) $ and
$
s_i= \frac{i}{2}*[2a_1*(i-1)(2d)]
$
}}
\small{\text{
$
\Rightarrow s_5= 17 = \frac{5}{2}*[2a_1+(5-1)(2d)]
$
}} $\\$
\small{\text{
$
2*17 = 5*(2a_1+8d)
$
}} $\\$
\small{\text{
$
\textcolor[rgb]{0,0,1}{(2) \quad 34 = 10a_1+40d}
$
}}$$
$$\small{\text{
(1) - (2):
$\quad
32-34 = 10a_1-10a_1 + 45d-40d = 5d \qquad -2=5d \qquad \boxed{d = -\frac{2}{5}}
$
}}$$
$$\small{\text{
d into (2):
$
\quad
34 = 10a_1+40*(-\frac{2}{5}) = 10a_1 - 16 \qquad 10a_1 = 50 \qquad \boxed{a_1 =5 }
$
}}$$