Processing math: 100%
 
+0  
 
0
2821
3
avatar

Let a_1a_2, . . . , a_{10} be an arithmetic sequence. If a_1 + a_3 + a_5 + a_7 + a_9 = 17 and a_2 + a_4 + a_6 + a_8 + a_{10} = 15, then find a_1.

 Jan 17, 2015

Best Answer 

 #1
avatar+130466 
+10

Let a_1a_2, . . . , a_{10} be an arithmetic sequence. If a_1 + a_3 + a_5 + a_7 + a_9 = 17 and a_2 + a_4 + a_6 + a_8 + a_{10} = 15, then find a_1.

Subtracting the second sum from the first, we have

(a2 - a1) + (a4 - a3) + (a6 - a5) + (a8 - a7) + (a10 - a9) = -2   or

  d           +      d       +      d       +     d        +      d        =  -2   or

5d = -2     →   d = -2/5

Also, the sum of the arithmetic series is given by

S = (10/2)(a1 + a10) = 5(a1 + a10) = 32     divide both sides by 5

So

a1 + a10 = 32/5 →  a10 = 32/5 - a1  ( 1)

And the last term is given by

a10 = a1 + d(9)    (2)

Therefore, setting (1) = (2), we have

32/5 - a1 = a1 + d(9)     ... solve for a1

(32/5 -2a1) = d(9)

32/5 -2a1 = (-2/5)(9) = -18/5  

32/5 + 18/5 = 2a1

2a1 = 50/5

a1 = 5

And a10=  32/5 - a1 =  32/5 - 5 = 1.4

Proof

a1 + a3 + a5 + a7 + a9  = 5 + 4.2 + 3.4 + 2.6 + 1.8 = 17

And since each of the other 5 terms  is (2/5) less than it's preceding term.....

[17 - 5(2/5)]  = [17 - 2] = 15  = the sum of the terms with even subscripts

 

 Jan 18, 2015
 #1
avatar+130466 
+10
Best Answer

Let a_1a_2, . . . , a_{10} be an arithmetic sequence. If a_1 + a_3 + a_5 + a_7 + a_9 = 17 and a_2 + a_4 + a_6 + a_8 + a_{10} = 15, then find a_1.

Subtracting the second sum from the first, we have

(a2 - a1) + (a4 - a3) + (a6 - a5) + (a8 - a7) + (a10 - a9) = -2   or

  d           +      d       +      d       +     d        +      d        =  -2   or

5d = -2     →   d = -2/5

Also, the sum of the arithmetic series is given by

S = (10/2)(a1 + a10) = 5(a1 + a10) = 32     divide both sides by 5

So

a1 + a10 = 32/5 →  a10 = 32/5 - a1  ( 1)

And the last term is given by

a10 = a1 + d(9)    (2)

Therefore, setting (1) = (2), we have

32/5 - a1 = a1 + d(9)     ... solve for a1

(32/5 -2a1) = d(9)

32/5 -2a1 = (-2/5)(9) = -18/5  

32/5 + 18/5 = 2a1

2a1 = 50/5

a1 = 5

And a10=  32/5 - a1 =  32/5 - 5 = 1.4

Proof

a1 + a3 + a5 + a7 + a9  = 5 + 4.2 + 3.4 + 2.6 + 1.8 = 17

And since each of the other 5 terms  is (2/5) less than it's preceding term.....

[17 - 5(2/5)]  = [17 - 2] = 15  = the sum of the terms with even subscripts

 

CPhill Jan 18, 2015
 #2
avatar+118703 
+5

Original sequence   a=a1    d=d

Sn=n2[2a+(n1)d]$ThisisthesumofanAP$

 

 a1+a3+a5+a7+a9=17n=5,a=a1,newd=2d

 

 

52[2a1+(51)2d]=1752[2a1+8d]=175[a1+4d]=17a1+4d=175(1)

 

a2+a4+a6+a8+a10=15n=5,a=a1+d,newd=2d

 

 

52[2(a1+d)+(51)2d]=1552[2(a1+d)+8d]=155[(a1+d)+4d]=155[a1+5d]=15a1+5d=3(2)

 

Solve simultaneously

(2)-(1)

d=3-17/5 = -2/5

sub into (2)

a1+5(-2/5)=3

a1-2=3

a1=5

 Jan 19, 2015
 #3
avatar+26396 
+5

Let a_1a_2, . . . , a_{10} be an arithmetic sequence.  If  a_1 + a_3 + a_5 + a_7 + a_9 = 17

and a_2 + a_4 + a_6 + a_8 + a_{10} = 15, then find a_1.

1. arithmetic sequence:  a1,a2,a3,a4,a5,a6,a7,a8,a9,a10 $$ an=a1+(n1)d and sn=n2[2a1(n1)d]  s10=17+15=102[2a1+(101)d] $$ 32=5(2a1+9d) $$ (1)32=10a1+45d 

2. arithmetic sequence:

 a1,a3,a5,a7,a9 $$ ai=a1+(i1)(2d) and si=i2[2a1(i1)(2d)]  s5=17=52[2a1+(51)(2d)] $$ 217=5(2a1+8d) $$ (2)34=10a1+40d 

  (1) - (2): 3234=10a110a1+45d40d=5d2=5dd=25 

 d into (2): 34=10a1+40(25)=10a11610a1=50a1=5 

 Jan 19, 2015

0 Online Users