Processing math: 100%
 
+0  
 
0
3694
5
avatar

Part (a): Find the suma + (a + 1) + (a + 2) + \dots + (a + n - 1)in terms of a and n. 

Part (b): Find all pairs of positive integers (a,n) such that n \ge 2 anda + (a + 1) + (a + 2) + \dots + (a + n - 1) = 100.

 Jan 20, 2015

Best Answer 

 #3
avatar+26396 
+5

Part (a): Find the sum  s =  a + (a + 1) + (a + 2) + \dots + (a + n - 1) in terms of a and n. 

s=a+(a+1)+(a+2)+(a+3)+...+(a+(n2))+(a+(n1))s=[a+(a+(n1))](n2)s=[2a+(n1))](n2)s=na+n(n1)2

 

Part (b): Find all pairs of positive integers (a,n) such that n \ge 2 anda + (a + 1) + (a + 2) + \dots + (a + n - 1) = 100. 

2n14 and a>0 n=2a=49.500000  n=3a=32.333333 $$ n=4a=23.500000 $$ n=5a=18.000000 $$ n=6a=14.166667 $$ n=7a=11.285714 $$ n=8a=9.000000 $$ n=9a=7.111111 $$ n=10a=5.500000 $$ n=11a=4.090909 $$ n=12a=2.833333 $$ n=13a=1.692308 $$ n=14a=0.642857 $$ The only 2 solutions for (a,n) are (18,5), (9,8) $$ 18+19+20+21+22=100 and 9+10+11+12+13+14+15+16=100 

 Jan 20, 2015
 #2
avatar+118703 
+5

http://web2.0calc.com/questions/instructions-on-reposting_1

 

It is best to follow these instructions when you want to repost :)

 Jan 20, 2015
 #3
avatar+26396 
+5
Best Answer

Part (a): Find the sum  s =  a + (a + 1) + (a + 2) + \dots + (a + n - 1) in terms of a and n. 

s=a+(a+1)+(a+2)+(a+3)+...+(a+(n2))+(a+(n1))s=[a+(a+(n1))](n2)s=[2a+(n1))](n2)s=na+n(n1)2

 

Part (b): Find all pairs of positive integers (a,n) such that n \ge 2 anda + (a + 1) + (a + 2) + \dots + (a + n - 1) = 100. 

2n14 and a>0 n=2a=49.500000  n=3a=32.333333 $$ n=4a=23.500000 $$ n=5a=18.000000 $$ n=6a=14.166667 $$ n=7a=11.285714 $$ n=8a=9.000000 $$ n=9a=7.111111 $$ n=10a=5.500000 $$ n=11a=4.090909 $$ n=12a=2.833333 $$ n=13a=1.692308 $$ n=14a=0.642857 $$ The only 2 solutions for (a,n) are (18,5), (9,8) $$ 18+19+20+21+22=100 and 9+10+11+12+13+14+15+16=100 

heureka Jan 20, 2015
 #4
avatar+118703 
+3

Thanks Heureka    

My answer is wrong - the error was right near the beginning.    

I am sure that Heureka's answer is perfect.

 Jan 20, 2015
 #4
avatar
0

Heureka, could you please explain how you got 2n14 and a>0 Where did those numbers come from?

Guest Jan 22, 2016
 #5
avatar
0

If you plug in n= 15 you get ​a=-1/3  and the question asks for the positive integers a and n

 Jan 31, 2017

0 Online Users