Part (a): Find the sum s = in terms of
and
s=a+(a+1)+(a+2)+(a+3)+...+(a+(n−2))+(a+(n−1))s=[a+(a+(n−1))]∗(n2)s=[2a+(n−1))]∗(n2)s=n∗a+n(n−1)2
Part (b): Find all pairs of positive integers such that
and
2≤n≤14 and a>0 n=2a=49.500000 n=3a=32.333333 $$ n=4a=23.500000 $$ n=5a=18.000000 $$ n=6a=14.166667 $$ n=7a=11.285714 $$ n=8a=9.000000 $$ n=9a=7.111111 $$ n=10a=5.500000 $$ n=11a=4.090909 $$ n=12a=2.833333 $$ n=13a=1.692308 $$ n=14a=0.642857 $$ The only 2 solutions for (a,n) are (18,5), (9,8) $$ 18+19+20+21+22=100 and 9+10+11+12+13+14+15+16=100
http://web2.0calc.com/questions/instructions-on-reposting_1
It is best to follow these instructions when you want to repost :)
Part (a): Find the sum s = in terms of
and
s=a+(a+1)+(a+2)+(a+3)+...+(a+(n−2))+(a+(n−1))s=[a+(a+(n−1))]∗(n2)s=[2a+(n−1))]∗(n2)s=n∗a+n(n−1)2
Part (b): Find all pairs of positive integers such that
and
2≤n≤14 and a>0 n=2a=49.500000 n=3a=32.333333 $$ n=4a=23.500000 $$ n=5a=18.000000 $$ n=6a=14.166667 $$ n=7a=11.285714 $$ n=8a=9.000000 $$ n=9a=7.111111 $$ n=10a=5.500000 $$ n=11a=4.090909 $$ n=12a=2.833333 $$ n=13a=1.692308 $$ n=14a=0.642857 $$ The only 2 solutions for (a,n) are (18,5), (9,8) $$ 18+19+20+21+22=100 and 9+10+11+12+13+14+15+16=100
Thanks Heureka
My answer is wrong - the error was right near the beginning.
I am sure that Heureka's answer is perfect.