Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #4
avatar+26397 
+10

Penn writes a 2013-term arithmetic sequence of positive integers, and Teller writes a different 2013-term arithmetic sequence of integers. Teller's first term is the negative of Penn's first term. Each then finds the sum of the terms in his sequence. If their sums are equal, then what is the smallest possible value of the first term in Penn's sequence?

Arithmetic series Penn: \small{  \text{  $p_n = p_1 + (n-1) d_p $  }}\ . \quad   \text{The sum} \   \text{  $ s_p= \frac{n}{2}*[2p_1+(n-1)d_p]  $  }} 

Arithmetic series Teller: \small{\text{$t_n = t_1 + (n-1) d_t $  }}\ . \quad   \text{The sum} \   \text{  $ s_t= \frac{n}{2}*[2t_1+(n-1)d_t]  $  }}

I.

 sp=st $$ n2[2p1+(n1)dp]=n2[2t1+(n1)dt] $$ 2p1+(n1)dp=2t1+(n1)dt 

II.

 t1=p1 $$ 2p1+(n1)dp=2p1+(n1)dt $$ 4p1=(n1)dt(n1)dp=(n1)(dtdp) 

III.

 n=2013 $$ 4p1=2012(dtdp) $$ p1=503(dtdp) 

IV.

The smallest possible value of the first term in  Penn's sequence p1 is 503, if (dtdp)=1

.
19.01.2015