Least Common Multiples of (with solution)
A. 23^31,23^17
B. 3^7*5^3*7^3,2^11*3^5*5^9
C. 3^13*5^17,2^12*7^21
Please help me. I am very confused right now.
Least Common Multiples(LCM) ?
A. 23^31,23^17
\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 23^{31} &=& 23^{\textcolor[rgb]{1,0,0}{31}} &&&&&& \\ \text{Number 2:} & 23^{17} &=& 23^{17} &&&&&&\\ \hline \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 23^{\textcolor[rgb]{1,0,0}{31}}&&&&&& \end{array} }}
B. 3^7*5^3*7^3,2^11*3^5*5^9
\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 3^{7}*5^3*7^3 &=& 2^0 &*& 3^{\textcolor[rgb]{1,0,0}{7}} &*& 5^3 &*& 7^{\textcolor[rgb]{1,0,0}{3}} \\ \text{Number 2:} & 2^{11}*3^5*5^9 &=& 2^{\textcolor[rgb]{1,0,0}{11}}&*& 3^5 &*& 5^{\textcolor[rgb]{1,0,0}{9}} &*& 7^0\\ \hline \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 2^{\textcolor[rgb]{1,0,0}{11}}&*&3^{\textcolor[rgb]{1,0,0}{7}} &*&5^{\textcolor[rgb]{1,0,0}{9}} &*& 7^{\textcolor[rgb]{1,0,0}{3}} \end{array} }}
C. 3^13*5^17,2^12*7^21
\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 3^{13}*5^{17} &=& 2^0 &*& 3^{\textcolor[rgb]{1,0,0}{13}} &*& 5^{\textcolor[rgb]{1,0,0}{17}} &*& 7^0 \\ \text{Number 2:} & 2^{12}*7^{21} &=& 2^{\textcolor[rgb]{1,0,0}{12}}&*& 3^0 &*& 5^0 &*& 7^{\textcolor[rgb]{1,0,0}{21}}\\ \hline \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 2^{\textcolor[rgb]{1,0,0}{12}}&*&3^{\textcolor[rgb]{1,0,0}{13}} &*&5^{\textcolor[rgb]{1,0,0}{17}} &*& 7^{\textcolor[rgb]{1,0,0}{21}} \end{array} }}
B.
37∗53∗73and211∗35∗5937∗53∗73=35∗32∗53∗7337∗53∗73=35∗53∗73∗32211∗35∗59=35∗53∗56∗211$Sothelowestcommondenominatoris$35∗53
Thanks anon. I messed up LOL
the first one
LCM= 23^31 because they both go into that.
2)
37∗53∗73and211∗35∗5937∗53∗73=35∗32∗53∗7337∗53∗73=35∗53∗73∗32211∗35∗59=35∗53∗56∗211$Sothelowestcommonmultiplewillbe$35∗53∗73∗32∗56∗211
You can try the last one for yourself anon unless one of the others on the forum would like to have a go.
And I am not meaning our other full blown mathematicians either.
Why don't one of you amateurs have a go at it?
Don't forget to show your logic though
Here's B
3^7*5^3*7^3, 2^11*3^5*5^9
We take each different base along with the highest power associated with that base.....so we have....
2^11 x 3^7 x 5*9 x 7^3 = LCM = 3,000,564,000,000,000
Least Common Multiples(LCM) ?
A. 23^31,23^17
\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 23^{31} &=& 23^{\textcolor[rgb]{1,0,0}{31}} &&&&&& \\ \text{Number 2:} & 23^{17} &=& 23^{17} &&&&&&\\ \hline \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 23^{\textcolor[rgb]{1,0,0}{31}}&&&&&& \end{array} }}
B. 3^7*5^3*7^3,2^11*3^5*5^9
\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 3^{7}*5^3*7^3 &=& 2^0 &*& 3^{\textcolor[rgb]{1,0,0}{7}} &*& 5^3 &*& 7^{\textcolor[rgb]{1,0,0}{3}} \\ \text{Number 2:} & 2^{11}*3^5*5^9 &=& 2^{\textcolor[rgb]{1,0,0}{11}}&*& 3^5 &*& 5^{\textcolor[rgb]{1,0,0}{9}} &*& 7^0\\ \hline \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 2^{\textcolor[rgb]{1,0,0}{11}}&*&3^{\textcolor[rgb]{1,0,0}{7}} &*&5^{\textcolor[rgb]{1,0,0}{9}} &*& 7^{\textcolor[rgb]{1,0,0}{3}} \end{array} }}
C. 3^13*5^17,2^12*7^21
\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 3^{13}*5^{17} &=& 2^0 &*& 3^{\textcolor[rgb]{1,0,0}{13}} &*& 5^{\textcolor[rgb]{1,0,0}{17}} &*& 7^0 \\ \text{Number 2:} & 2^{12}*7^{21} &=& 2^{\textcolor[rgb]{1,0,0}{12}}&*& 3^0 &*& 5^0 &*& 7^{\textcolor[rgb]{1,0,0}{21}}\\ \hline \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 2^{\textcolor[rgb]{1,0,0}{12}}&*&3^{\textcolor[rgb]{1,0,0}{13}} &*&5^{\textcolor[rgb]{1,0,0}{17}} &*& 7^{\textcolor[rgb]{1,0,0}{21}} \end{array} }}