Processing math: 100%
 
+0  
 
0
852
7
avatar

Least Common Multiples of (with solution)

A. 23^31,23^17

B. 3^7*5^3*7^3,2^11*3^5*5^9

C. 3^13*5^17,2^12*7^21

Please help me. I am very confused right now.

 Jan 19, 2015

Best Answer 

 #7
avatar+26396 
+5

Least Common Multiples(LCM)  ?

A. 23^31,23^17

\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 23^{31} &=& 23^{\textcolor[rgb]{1,0,0}{31}} &&&&&& \\ \text{Number 2:} & 23^{17} &=& 23^{17} &&&&&&\\ \hline \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 23^{\textcolor[rgb]{1,0,0}{31}}&&&&&& \end{array} }}

 

B. 3^7*5^3*7^3,2^11*3^5*5^9

\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 3^{7}*5^3*7^3 &=& 2^0 &*& 3^{\textcolor[rgb]{1,0,0}{7}} &*& 5^3 &*& 7^{\textcolor[rgb]{1,0,0}{3}} \\ \text{Number 2:} & 2^{11}*3^5*5^9 &=& 2^{\textcolor[rgb]{1,0,0}{11}}&*& 3^5 &*& 5^{\textcolor[rgb]{1,0,0}{9}} &*& 7^0\\ \hline  \text{The greatest Exponent}  \\ \text{ of each prime number} &\text{LCM}&=& 2^{\textcolor[rgb]{1,0,0}{11}}&*&3^{\textcolor[rgb]{1,0,0}{7}} &*&5^{\textcolor[rgb]{1,0,0}{9}} &*& 7^{\textcolor[rgb]{1,0,0}{3}} \end{array} }}

 

C. 3^13*5^17,2^12*7^21

  \small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 3^{13}*5^{17} &=& 2^0 &*& 3^{\textcolor[rgb]{1,0,0}{13}} &*& 5^{\textcolor[rgb]{1,0,0}{17}} &*& 7^0 \\ \text{Number 2:} & 2^{12}*7^{21} &=& 2^{\textcolor[rgb]{1,0,0}{12}}&*& 3^0 &*& 5^0 &*& 7^{\textcolor[rgb]{1,0,0}{21}}\\ \hline  \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 2^{\textcolor[rgb]{1,0,0}{12}}&*&3^{\textcolor[rgb]{1,0,0}{13}} &*&5^{\textcolor[rgb]{1,0,0}{17}} &*& 7^{\textcolor[rgb]{1,0,0}{21}} \end{array} }} 

 Jan 19, 2015
 #1
avatar+118703 
+5

A)

. 2331and23172331=231723142317=23171so2317$isthelowestcommondenominator$

 Jan 19, 2015
 #2
avatar
+5

miss melody he is looking for LCM not LCD :)

 Jan 19, 2015
 #3
avatar+118703 
+5

B.

375373and2113559375373=35325373375373=355373322113559=355356211$Sothelowestcommondenominatoris$3553

 Jan 19, 2015
 #4
avatar+118703 
+5

Thanks anon.    I messed up   LOL

the first one 

LCM=  23^31 because they both go into that. 

 

2)

375373and2113559375373=35325373375373=355373322113559=355356211$Sothelowestcommonmultiplewillbe$3553733256211

 Jan 19, 2015
 #5
avatar+118703 
+5

You can try the last one for yourself anon unless one of the others on the forum would like to have a go.

And I am not meaning our other full blown mathematicians either.

Why don't one of you amateurs have a go at it?

Don't forget to show your logic though  

 Jan 19, 2015
 #6
avatar+130466 
+5

Here's B

3^7*5^3*7^3, 2^11*3^5*5^9

We take each different base along with the highest power associated with that base.....so we have....

2^11 x 3^7 x 5*9 x 7^3 = LCM = 3,000,564,000,000,000

 

 Jan 19, 2015
 #7
avatar+26396 
+5
Best Answer

Least Common Multiples(LCM)  ?

A. 23^31,23^17

\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 23^{31} &=& 23^{\textcolor[rgb]{1,0,0}{31}} &&&&&& \\ \text{Number 2:} & 23^{17} &=& 23^{17} &&&&&&\\ \hline \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 23^{\textcolor[rgb]{1,0,0}{31}}&&&&&& \end{array} }}

 

B. 3^7*5^3*7^3,2^11*3^5*5^9

\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 3^{7}*5^3*7^3 &=& 2^0 &*& 3^{\textcolor[rgb]{1,0,0}{7}} &*& 5^3 &*& 7^{\textcolor[rgb]{1,0,0}{3}} \\ \text{Number 2:} & 2^{11}*3^5*5^9 &=& 2^{\textcolor[rgb]{1,0,0}{11}}&*& 3^5 &*& 5^{\textcolor[rgb]{1,0,0}{9}} &*& 7^0\\ \hline  \text{The greatest Exponent}  \\ \text{ of each prime number} &\text{LCM}&=& 2^{\textcolor[rgb]{1,0,0}{11}}&*&3^{\textcolor[rgb]{1,0,0}{7}} &*&5^{\textcolor[rgb]{1,0,0}{9}} &*& 7^{\textcolor[rgb]{1,0,0}{3}} \end{array} }}

 

C. 3^13*5^17,2^12*7^21

  \small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 3^{13}*5^{17} &=& 2^0 &*& 3^{\textcolor[rgb]{1,0,0}{13}} &*& 5^{\textcolor[rgb]{1,0,0}{17}} &*& 7^0 \\ \text{Number 2:} & 2^{12}*7^{21} &=& 2^{\textcolor[rgb]{1,0,0}{12}}&*& 3^0 &*& 5^0 &*& 7^{\textcolor[rgb]{1,0,0}{21}}\\ \hline  \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 2^{\textcolor[rgb]{1,0,0}{12}}&*&3^{\textcolor[rgb]{1,0,0}{13}} &*&5^{\textcolor[rgb]{1,0,0}{17}} &*& 7^{\textcolor[rgb]{1,0,0}{21}} \end{array} }} 

heureka Jan 19, 2015

2 Online Users

avatar