my uncle wrote three different letters and addressed three envelopes. then he went outside for a walk. while he was out, his little daughter put a letter into each envelope and sealed it. what is the probability that none of the letters was in the correct envelope?
$$\small{\text{
\textcolor[rgb]{0,1,0}{okay} \text{ \textcolor[rgb]{1,0,0}{false}
\begin{array}{|l|c|c|c|}
\hline
$n& letter 1 & letter 2 & letter 3 $ \\
\hline
$1& envelope\ \textcolor[rgb]{0,1,0}{1} & envelope\ \textcolor[rgb]{0,1,0}{2} & envelope\ \textcolor[rgb]{0,1,0}{3} $ \\
$2& envelope\ \textcolor[rgb]{0,1,0}{1} & envelope\ \textcolor[rgb]{1,0,0}{3} & envelope\ \textcolor[rgb]{1,0,0}{2} $ \\
$3& envelope\ \textcolor[rgb]{1,0,0}{2} & envelope\ \textcolor[rgb]{1,0,0}{1} & envelope\ \textcolor[rgb]{0,1,0}{3} $ \\
$\textcolor[rgb]{1,0,0}{4}& envelope\ \textcolor[rgb]{1,0,0}{2} & envelope\ \textcolor[rgb]{1,0,0}{3} & envelope\ \textcolor[rgb]{1,0,0}{1} $ \\
$\textcolor[rgb]{1,0,0}{5}& envelope\ \textcolor[rgb]{1,0,0}{3} & envelope\ \textcolor[rgb]{1,0,0}{1} & envelope\ \textcolor[rgb]{1,0,0}{2} $ \\
$6& envelope\ \textcolor[rgb]{1,0,0}{3} & envelope\ \textcolor[rgb]{0,1,0}{2} & envelope\ \textcolor[rgb]{1,0,0}{1} $ \\
\hline
\end{array}
}}$$
The probability that none of the letters was in the correct envelope is $$\frac{2}{6} = \frac{1}{3} = 33.\overline{3}\ \%$$
.