Let ABCD be a convex quadrilateral, 
 and let P, Q, R, S, T, U, V, and W be the trisection points of the sides of ABCD, as shown. 
 If the area of quadrilateral ABCD is 180, then find the area of hexagon AQRCUV.
  
 Let AB = a
 Let BC = b
 Let CD = c
 Let DA = d
 Let \(\angle{ABC}\) = B
 Let \(\angle{UDV}\) = D
  
 \(\begin{array}{|rcll|} \hline Area_{\text{ABC}} &=& \frac{ab\sin(B)}{2} \\ Area_{\text{CDA}} &=& \frac{cd\sin(D)}{2} \\ Area_{\text{ABCD}} &=& Area_{\text{ABC}} + Area_{\text{CDA}} \\ &=& \frac{ab\sin(B)}{2} + \frac{cd\sin(D)}{2} \\ \hline \end{array} \)
  
 \(\begin{array}{|rcll|} \hline Area_{\text{QBR}} &=& \frac{\frac{a}{3}\frac{b}{3}\sin(B)}{2} \\ Area_{\text{UDV}} &=& \frac{\frac{c}{3}\frac{d}{3}\sin(D)}{2} \\ Area_{\text{hexagon}} &=& Area_{\text{ABCD}} - Area_{\text{QBR}} - Area_{\text{UDV}} \\ Area_{\text{hexagon}} &=& Area_{\text{ABCD}} -\frac{\frac{a}{3}\frac{b}{3}\sin(B)}{2} - \frac{\frac{c}{3}\frac{d}{3}\sin(D)}{2} \\ Area_{\text{hexagon}} &=& \frac{ab\sin(B)}{2} + \frac{cd\sin(D)}{2} -\frac{\frac{a}{3}\frac{b}{3}\sin(B)}{2} - \frac{\frac{c}{3}\frac{d}{3}\sin(D)}{2} \\ Area_{\text{hexagon}} &=& \frac{ab\sin(B)}{2}\left(1-\frac19 \right) + \frac{cd\sin(D)}{2}\left(1-\frac19 \right) \\ Area_{\text{hexagon}} &=& \frac{ab\sin(B)}{2}\cdot \frac89 + \frac{cd\sin(D)}{2}\cdot \frac89 \\ Area_{\text{hexagon}} &=& \frac89 \cdot \left( \frac{ab\sin(B)}{2} + \frac{cd\sin(D)}{2} \right) \\ Area_{\text{hexagon}} &=& \frac89 \cdot Area_{\text{ABCD}} \\ Area_{\text{hexagon}} &=& \frac89 \cdot 180 \\ \mathbf{ Area_{\text{hexagon}} } & \mathbf{=} & \mathbf{160} \\ \hline \end{array}\)
  
 The area of hexagon AQRCUV is 160
  
 