Let ABCD be a convex quadrilateral,
and let P, Q, R, S, T, U, V, and W be the trisection points of the sides of ABCD, as shown.
If the area of quadrilateral ABCD is 180, then find the area of hexagon AQRCUV.
Let AB = a
Let BC = b
Let CD = c
Let DA = d
Let ∠ABC = B
Let ∠UDV = D
AreaABC=absin(B)2AreaCDA=cdsin(D)2AreaABCD=AreaABC+AreaCDA=absin(B)2+cdsin(D)2
AreaQBR=a3b3sin(B)2AreaUDV=c3d3sin(D)2Areahexagon=AreaABCD−AreaQBR−AreaUDVAreahexagon=AreaABCD−a3b3sin(B)2−c3d3sin(D)2Areahexagon=absin(B)2+cdsin(D)2−a3b3sin(B)2−c3d3sin(D)2Areahexagon=absin(B)2(1−19)+cdsin(D)2(1−19)Areahexagon=absin(B)2⋅89+cdsin(D)2⋅89Areahexagon=89⋅(absin(B)2+cdsin(D)2)Areahexagon=89⋅AreaABCDAreahexagon=89⋅180Areahexagon=160
The area of hexagon AQRCUV is 160
