heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26387 
0

Hugo rennt beim Marathon mit dem Startschuss los und läuft konstant 5:30 Min./km.
Daniela überquert die Startlinie erst nach 4:34 Minuten.
Nach dem ersten Kilometer in 6:23 Minuten läuft sie gleichmäßig 5:20 Min./km.
Wird sie Hugo überholen? Wenn ja, wo?

 

Korrektur?

 

\(\begin{array}{|rcll|} \hline v_{\text{Hugo}} &=& \frac{1}{5+\frac{30}{60}} \frac{km}{Min.} \\ &=& \frac{1}{5.5} \frac{km}{Min.} \\ &=& 0,\overline{18} \frac{km}{Min.} \\\\ v_{\text{Daniela}} &=& \frac{1}{5+\frac{20}{60}} \frac{km}{Min.} \\ &=& \frac{1}{5.\bar{3}} \frac{km}{Min.} \\ &=& 0,1875 \frac{km}{Min.} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline s_{\text{Hugo}}(t) &=& v_{\text{Hugo}}\cdot t + v_{\text{Hugo}}\cdot (4+\frac{34}{60} ) \\ s_{\text{Daniela}}(t) &=& v_{\text{Daniela}}\cdot[t-(6+\frac{23}{60})] +1\ km \\ \hline \end{array} \)

 

Hugo und Daniela sind auf gleicher Höhe wenn: \(s_{\text{Hugo}}(t)=s_{\text{Daniela}}(t)\)

 

\(\begin{array}{|rcll|} \hline v_{\text{Hugo}}\cdot t_{\text{auf gleicher Höhe}} + v_{\text{Hugo}}\cdot (4+\frac{34}{60} ) &=& v_{\text{Daniela}}\cdot[t_{\text{auf gleicher Höhe}}-(6+\frac{23}{60})] +1 \\ \cdots \\ t_{\text{auf gleicher Höhe}} &=& \frac{v_{ \text{Daniela}}\cdot(6+\frac{23}{60})+v_{\text{Hugo}}\cdot (4+\frac{34}{60}) - 1 } {v_{\text{Daniela}}-v_{\text{Hugo}}} \\ &=& \frac{ 0, 1875\cdot 6,38\bar{3}+ 0, \overline{18}\cdot 4,5\bar{6} - 1 } { 0, 1875 - 0, \overline{18} } \\ &=& 180,78\bar{3} \ Min. \\ &=& 180:47 \ Min. \\\\ s_{\text{auf gleicher Höhe}} &=& v_{\text{Hugo}}\cdot t_{\text{auf gleicher Höhe}} + v_{\text{Hugo}}\cdot (4+\frac{34}{60} ) \\ &=& 0,\overline{18}\cdot 180,78\bar{3} + 0,\overline{18}\cdot 4,5\bar{6} \\ &=& 33,7\ km \\\\ s_{\text{auf gleicher Höhe}} &=& v_{\text{Daniela}}\cdot[t_{\text{auf gleicher Höhe}}-(6+\frac{23}{60})] +1 \\ &=& 0,1875\cdot[180,78\bar{3}-6,38\bar{3}] +1 \\ &=& 33,7\ km \\ \hline \end{array} \)

 

Daniela wird Hugo nach \(33,7\ km\) überholen.

 

laugh

15.02.2017
 #4
avatar+26387 
0

ich habe ein Rechteck mit den Seitenlängen a = 1 und b = 3.

Das ergibt einen Flächeninhalt von 3.

Ich möchte nun den Flächeninhalt um den Faktor x = 2 vergrößern und die neuen Seitenlängen bestimmen.

 

Seitenlängen Rechteck: \( a=1, \ b=3.\)  Fläche \( A = a * b\)

Neues Rechteck:  a' = ?, b' = ?  Fläche \(= a' * b'\)

x = Vergößerungsfaktor.

 

1. Formel - Vergleich der Flächen:

\(\begin{array}{|lrcll|} \hline & A &=& a*b\\ & x*A = x*a*b &=& a'*b' \\ & x*a*b &=& a'*b' \\ (1) & \mathbf{x*\dfrac{a}{a'}} & \mathbf{=} & \mathbf{\dfrac{b'}{b}} \\ \hline \end{array} \)

 

2. Formel Strahlensatz:

\(\begin{array}{|lrcll|} \hline & \dfrac{ \frac{a}{2} } { \frac{b}{2} } &=& \dfrac{ \frac{a'}{2} } { \frac{b'}{2} } \\ & \dfrac{a}{b} & = & \dfrac{a'}{b'} \\ (2) & \mathbf{\dfrac{a}{a'} } & \mathbf{=} & \mathbf{ \dfrac{b}{b'} } \\ \hline \end{array} \)

 

Formel 2 in Formel 1 einsetzen und b' berechnen:

\(\begin{array}{|lrcll|} \hline & x*\dfrac{a}{a'} & = & \dfrac{b'}{b} \quad & | \quad \dfrac{a}{a'} = \dfrac{b}{b'} \\ & x*\dfrac{b}{b'} & = & \dfrac{b'}{b} \\ & x*b^2 & = & b'^2\\ (3) & \mathbf{b'} &\mathbf{=}& \mathbf{b *\sqrt{x}} \\ (4) & \dfrac{b'}{b} & =& \sqrt{x} \\ \hline \end{array}\)

 

Formel 4 in Formel 1 einsetzen und a' berechnen:

\(\begin{array}{|lrcll|} \hline & x*\dfrac{a}{a'} & = & \dfrac{b'}{b} \quad & | \quad \dfrac{b'}{b} & =& \sqrt{x} \\ & x*\dfrac{a}{a'} & = & \sqrt{x} \\ & a' &=& \dfrac{x*a}{\sqrt{x}} \cdot \dfrac{\sqrt{x}}{\sqrt{x}} \\ & a' &=& \dfrac{x*a*\sqrt{x}}{x} \\ (5) & \mathbf{a'} &\mathbf{=}& \mathbf{a *\sqrt{x}} \\ \hline \end{array} \)

 

Wir rechnen nun a' und b' aus:

\(\begin{array}{|rcll|} \hline a' &=& a *\sqrt{x} \quad & | \quad a = 1 \quad x = 2 \\ a' &=& 1 *\sqrt{2} \\ \mathbf{a'} &\mathbf{=}& \mathbf{1.41421356237} \\\\ b' &=& b *\sqrt{x} \quad & | \quad b = 3 \quad x = 2 \\ b' &=& 3 *\sqrt{2} \\ \mathbf{b'} &\mathbf{=}& \mathbf{4.24264068712} \\ \hline \end{array} \)

 

 

laugh

15.02.2017
 #1
avatar+26387 
0

Hugo rennt beim Marathon mit dem Startschuss los und läuft konstant 5:30 Min./km.
Daniela überquert die Startlinie erst nach 4:34 Minuten.
Nach dem ersten Kilometer in 6:23 Minuten läuft sie gleichmäßig 5:20 Min./km.
Wird sie Hugo überholen? Wenn ja, wo?

 

\(\begin{array}{|rcll|} \hline v_{\text{Hugo}} &=& \frac{1}{5+\frac{30}{60}} \frac{km}{Min.} \\ &=& \frac{1}{5.5} \frac{km}{Min.} \\ &=& 0,\overline{18} \frac{km}{Min.} \\\\ v_{\text{Daniela}} &=& \frac{1}{5+\frac{20}{60}} \frac{km}{Min.} \\ &=& \frac{1}{5.\bar{3}} \frac{km}{Min.} \\ &=& 0,1875 \frac{km}{Min.} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline s_{\text{Hugo}}(t) &=& v_{\text{Hugo}}\cdot t \\ &=& \left(\frac{1}{5.5}\right)\cdot t \\ &=& 0,\overline{18 }\cdot t \\\\ s_{\text{Daniela}}(t) &=& v_{\text{Daniela}}\cdot[t-(6+\frac{23}{60})] + \left[ -v_{\text{Hugo}}\cdot \left(4+\frac{34}{60}\right) +1\ km \right] \\ \hline \end{array} \)

 

Hugo und Daniela sind auf gleicher Höhe wenn: \(s_{\text{Hugo}}(t)=s_{\text{Daniela}}(t)\)

\(\begin{array}{|rcll|} \hline s_{\text{Hugo}}(t)&=& v_{\text{Daniela}}\cdot[t-(6+\frac{23}{60})] + \left[ -v_{\text{Hugo}}\cdot \left(4+\frac{34}{60}\right) +1\ km \right] \\ \cdots \\ t_{\text{auf gleicher Höhe}} &=& \frac{v_{ \text{Daniela}}\cdot(6+\frac{23}{60})+v_{\text{Hugo}}\cdot (4+\frac{34}{60}) - 1 } {v_{\text{Daniela}}-v_{\text{Hugo}}} \\ &=& \frac{ 0, 1875\cdot 6,38\bar{3}+ 0, \overline{18}\cdot 4,5\bar{6} - 1 } { 0, 1875 - 0, \overline{18} } \\ &=& 180,78\bar{3} \ Min. \\ &=& 180:47 \ Min. \\\\ s_{\text{auf gleicher Höhe}} &=& v_{\text{Hugo}}\cdot t_{\text{auf gleicher Höhe}} \\ &=& 0,\overline{18}\cdot 180,78\bar{3} \\ &=& 32,8\overline{69}\ km \\ \hline \end{array} \)

 

Daniela wird Hugo nach \(32,8\overline{69}\) km überholen.

 

laugh

15.02.2017
 #5
avatar+26387 
+10

What is the remainder of: 13^1031 mod 599 =? Thanks for help.

 

Fermat's little theorem states that if p is a prime number, then for any integer a,

\({\displaystyle a^{p}\equiv a{\pmod {p}}}\)

 

If a is not divisible by p, Fermat's little theorem is equivalent

\( {\displaystyle a^{p-1}\equiv 1{\pmod {p}}}\)

 

see: https://en.wikipedia.org/wiki/Fermat%27s_little_theorem

 

Let p = 599 (prime number)

Let a = 13 (prime number)

gcd(13,599) = 1 ! so 13 and 599 are relatively prime, we can use Fermat's little theorem.

 

\(\begin{array}{|rcll|} \hline a^{p-1} &\equiv& 1{\pmod {p}} \\ 13^{599-1} &\equiv& 1{\pmod {599}} \\ 13^{598} &\equiv& 1{\pmod {599}} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline && 13^{1031} \pmod{599} \\ &\equiv & 13^{598+433} \pmod{599} \\ &\equiv & 13^{598}\cdot 13^{433} \pmod{599} \quad & | \quad 13^{598} \pmod{599} = 1 \\ &\equiv & 1\cdot 13^{433} \pmod{599} \\ &\equiv & 13^{433} \pmod{599} \\ &\equiv & 13^{8\cdot 54 + 1} \pmod{599} \\ &\equiv & (13^{8})^{54}\cdot 13 \pmod{599} \quad & | \quad 13^8 \pmod{599} = 541 \\ &\equiv & 541^{54}\cdot 13 \pmod{599} \\ &\equiv & 541^{3\cdot 18 }\cdot 13 \pmod{599} \\ &\equiv & (541^{3})^{18}\cdot 13 \pmod{599} \quad & | \quad 541^3 \pmod{599} = 162 \\ &\equiv & 162^{18}\cdot 13 \pmod{599} \\ &\equiv & 162^{3\cdot 6}\cdot 13 \pmod{599} \\ &\equiv & (162^{3})^{6}\cdot 13 \pmod{599} \quad & | \quad 162^3 \pmod{599} = 425 \\ &\equiv & 425^{6}\cdot 13 \pmod{599} \\ &\equiv & 425^{3\cdot 2}\cdot 13 \pmod{599}\\ &\equiv & (425^{3})^{2}\cdot 13 \pmod{599} \quad & | \quad 425^3 \pmod{599} = 181 \\ &\equiv & 181^{2}\cdot 13 \pmod{599} \\ &\equiv & 425893 \pmod{599} \\ &\equiv & 4 \pmod{599} \\ \hline \end{array}\)

 

laugh

15.02.2017