Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
+10

I have checked and rechecked my problem the whole way through and I can't figure out what is wrong with it, I would really really like to know what I did wrong.

0π/3(cosx)(sin3x)dx

 

Until 1cos0cosπ/3(u)1/2(1u2)du it is correct.

 

distribute and find the endpoints:

112u12(1u2) du=112(u12u12u2) du|u12u2 is not u!!!=112(u12u12+2) du=112(u12u12+42) du=112(u12u52) du=[23u3227u72)]112=[23u32+27u72)]112=23(1)+27(1)[23(12)32+27(12)72]=23+27+1321282|12=22=23+27+26256=14+621+5666562=821+503362=821+251682

 

 

laugh

07.02.2017
 #2
avatar+26397 
+5

Deterimine whether the line 5x+12y=169 is a tangent to the circl  x2 + y2=169. if so, find the point where the tangent line touches the circle.

 

Discussion:
If the line and the circle have no intersections, then the line is not a tangent.
If the line and the circle have one intersection, then the line is a tangent.
If the line and the circle have two intersections, then the line is not a tangent.

 

We compute the intersections:

(1)5x+12y=169|169=1325x+12y=13212y=1325xy=1325x12(2)x2+y2=169|169=132x2+y2=132|y=1325x12x2+(1325x12)2=132x2+(1325x)2122=132|122122x2+(1325x)2=122132122x2+13213221325x+52x2=122132122x2+52x2+13213210132x=122132(122+52)x2+13213210132x=122132|122+52=132132x2+13213210132x=122132|:132x2+13210x=122|122x210x+132122=0|132122=52x210x+52=0x210x+25=0x=10±1004252x=10±1001002x=10±02x=102x=5y=1325x12y=1325212|13252=122y=12212y=12

 

We have only one intersection at x = 5 and y = 12,

so the line touches the circle.

 

laugh

07.02.2017