heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+15

Geometry Help

 

Given a simple polygon constructed on a grid of equal-distanced points (i.e., points with integer coordinates) such that all the polygon's vertices are grid points, Pick's theorem provides a simple formula for calculating the area A of this polygon in terms of the number i of lattice points in the interior located in the polygon and the number b of lattice points on the boundary placed on the polygon's perimeter:

 

 

i = 7, b = 8,
A = i + b/2 − 1 = 10

 

see: https://en.wikipedia.org/wiki/Pick%27s_theorem

 

1. What is the area of this polygon?

 

\(\begin{array}{|rcll|} \hline i &=& 33 \\ b &=& 20 \\ A &=& 33 + \frac{20}{2} - 1 \\ A &=& 42\\ \hline \end{array}\)

 

 

2. What is the area of this polygon?

\(\begin{array}{|rcll|} \hline i &=& 34 \\ b &=& 21 \\ A &=& 34 + \frac{21}{2} - 1 \\ A &=& 43.5 \\ \hline \end{array}\)

 

 

4. This figure is made up of a rectangle and parallelogram.
What is the area of this figure?

\(\begin{array}{|rcll|} \hline i &=& 18 \\ b &=& 18 \\ A &=& 18 + \frac{18}{2} - 1 \\ A &=& 26\\ \hline \end{array}\)

 

 

laugh

10.02.2017
 #2
avatar+26387 
+15

I am a number less than 3000.

If you divide me by 32 you will get a remainder 30.

If you divide me by 54 , you will get a remainder 44.

What number am I?

 

I am 638 or 1502 or 2366

 

\(\begin{array}{rcll} n \equiv {\color{red}30} \pmod {{\color{green}32}} \\ n \equiv {\color{red}44} \pmod {{\color{green}54}} \\\\ \text{or }\quad \begin{array}{rcll} n-30 = 32 r \\ n-44 = 54 s \\ \end{array} \end{array}\)

 

Because 32r or 54s is even
so n-30 or n-44 is even so n is even


We can set: \(m = \frac{n}{2}\) and m is an integer.

 

\(\begin{array}{|rcll|} \hline n-30 = 32 r \quad & | \quad :2 \\ \frac{n}{2}-15 = 16 r \\ m-15 = 16 r \\\\ n-44 = 54 s \quad & | \quad :2 \\ \frac{n}{2}-22 = 27 s \\ m-22 = 27 s \\\\ && \text{or }\quad \begin{array}{rcll} m \equiv {\color{red}15} \pmod {{\color{green}16}} \\ m \equiv {\color{red}22} \pmod {{\color{green}27}} \\ \end{array} \\ && \quad \text{ with } n=2m \text{ and } 16\cdot 27 = 432 \\ \hline \end{array} \)

 

Because 16 and 27 are relatively prim ( gcd(16,27) = 1! ) we can go on:

\(\begin{array}{rcll} m &=& {\color{red}15} \cdot {\color{green}27} \cdot [ \frac{1}{\color{green}27}\pmod {{\color{green}16}} ] + {\color{red}22} \cdot {\color{green}16} \cdot [ \frac{1}{\color{green}16}\pmod {{\color{green}27}} ] \\ \end{array}\)

 

\(\begin{array}{rcll} && [ \frac{1}{\color{green}27}\pmod {{\color{green}16}} ] \\ &=& {\color{green}27}^{\varphi({\color{green}16})-1} \pmod {{\color{green}16}} \\ &=& 27^{8-1} \mod {16} \\ &=& 27^{7} \mod {16} \\ &=& 3 \\\\ && [ \frac{1}{\color{green}16}\pmod {{\color{green}27}} ] \\ &=& {\color{green}16}^{\varphi({\color{green}27})-1} \pmod {{\color{green}27}} \\ &=& 16^{18-1} \mod {27} \\ &=& 16^{17} \mod {27} \\ &=& 22 \\ \end{array}\)

 

\(\begin{array}{rcll} m &=& {\color{red}15} \cdot {\color{green}27} \cdot 3 + {\color{red}22} \cdot {\color{green}16} \cdot 22 \\ m &=& 8959 + k\cdot 432 \quad & | \quad k \in Z \\\\ n &=& 2m \\ n &=& 2\cdot(8959 + k\cdot 432 ) \\ n &=& 17918 + k\cdot 864 \\\\ n_{min} &=& 17918 \pmod {864 } \\ n_{min} &=& 638 \\ \mathbf{n} &\mathbf{=}& \mathbf{638 + k\cdot 864} \quad & | \quad k \in Z \\ \end{array} \)

 

\(\begin{array}{|lrcll|} \hline k=0: & \mathbf{n} &\mathbf{=}& \mathbf{638} \\ k=1: & n &=& 638+1\cdot 864 \\ & \mathbf{n} &\mathbf{=}& \mathbf{1502} \\ k=2: & n &=& 638+2\cdot 864 \\ & \mathbf{n} &\mathbf{=}& \mathbf{2366} \\ \hline \end{array}\)

 

laugh

09.02.2017
 #2
avatar+26387 
+20

Two pipes together drain a wastewater holding tank in 6 hours.
If used alone to empty the tank, one takes 2 hours longer than the other.
How long does each take to empty the tank when used alone?

 

\(\begin{array}{|rcll|} \hline \text{Let } q_1 &=& \text{Volumetric flow pipe } 1 \\ \text{Let } q_2 &=& \text{Volumetric flow pipe } 2 \\ \text{Let } V &=& \text{Volume of the tank} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline & q_1 \cdot t + q_2 \cdot t &=& V \\ & (q_1 + q_2) \cdot t &=& V \quad & | \quad t = 6\ hours \\ (1) & (q_1 + q_2) \cdot 6 &=& V \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (2) & q_1\cdot t_1 &=& V \\ & t_1 &=& \frac{V}{q_1} \\ \hline & q_2 \cdot t_2 &=& V \quad & | \quad t_2 = t_1 + 2\ hours \\ (3) & q_2 \cdot (t_1 + 2) &=& V \\ & q_2 \cdot (t_1 + 2) &=& V \quad & | \quad t_1 = \frac{V}{q_1} \\ & q_2 \cdot (\frac{V}{q_1} + 2) &=& V \\ & \dots \\ (4) & V &=& \frac{2q_1q_2}{q_1-q_2} \\ \hline \end{array} \)

 

(1) = (4):

\(\begin{array}{|lrcll|} \hline & V = 6\cdot (q_1+q_2) &=& \frac{2q_1q_2}{q_1-q_2} \\ & 6\cdot (q_1+q_2) &=& \frac{2q_1q_2}{q_1-q_2} \quad & | \quad : 2\\ & 3\cdot (q_1+q_2) &=& \frac{q_1q_2}{q_1-q_2} \quad & | \quad \cdot (q_1-q_2) \\ & 3\cdot (q_1+q_2)(q_1-q_2) &=& q_1q_2 \\ & 3\cdot (q_1^2-q_2^2) &=& q_1q_2 \\ & 3q_1^2-3q_2^2-q_1q_2 &=& 0 \\ & 3q_1^2-q_1q_2-3q_2^2 &=& 0 \\\\ & q_1 &=& \frac{q_2\pm \sqrt{q_2^2-4\cdot 3 \cdot (-3q_2^2) } } {2\cdot 3} \\ & q_1 &=& \frac{q_2\pm \sqrt{ q_2^2+36q_2^2 } } {6} \\ & q_1 &=& \frac{q_2\pm \sqrt{ 37q_2^2 } } {6} \\ & q_1 &=& \frac{q_2\pm q_2\sqrt{37} } {6} \\ & q_1 &=& \frac16(1\pm\sqrt{37} ) q_2\\\\ & \mathbf{q_1 = \frac16(1+\sqrt{37} ) q_2 } &\text{ or }& q_1 = \frac16(1-\sqrt{37} )q_2 \\ & & & \text{ no solution } q_1 < 0 ! \\ (5) & \mathbf{\frac{q_1}{q_2} = \frac16(1+\sqrt{37} ) } \\ \hline \end{array}\)

 

(2) = (3):

\(\begin{array}{|lrcll|} \hline & V = q_1\cdot t_1 &=& q_2 \cdot (t_1 + 2) \\ & q_1\cdot t_1 &=& q_2 \cdot (t_1 + 2) \\ (6) & \frac{q_1}{q_2 } &=& \frac{t_1 + 2}{t_1} \\ \hline \end{array} \)

 

(5) = (6):

\(\begin{array}{|rcll|} \hline \frac{q_1}{q_2} = \frac16( 1+\sqrt{37} ) &=& \frac{t_1 + 2}{t_1} \\ \frac16( 1+\sqrt{37} ) &=& \frac{t_1 + 2}{t_1} \\ (1+\sqrt{37} )\cdot t_1 &=& 6\cdot(t_1 + 2) \\ (1+\sqrt{37} )\cdot t_1 &=& 6\cdot t_1 + 12 \\ (1+\sqrt{37} -6)\cdot t_1 &=& 12 \\ (\sqrt{37} - 5)\cdot t_1 &=& 12 \\ t_1 &=& \frac{12}{\sqrt{37} - 5} \\ t_1 &=& \frac{12}{6.08276253030- 5} \\ t_1 &=& \frac{12}{1.08276253030} \\ \mathbf{ t_1 } &\mathbf{=}& \mathbf{11.0827625303\ hours }\\\\ t_2 &=& t_1 + 2\ hours \\ \mathbf{ t_2 } &\mathbf{=}& \mathbf{13.0827625303\ hours }\\ \hline \end{array}\)

 

 

laugh

08.02.2017
 #3
avatar+26387 
0

Find the sum of 35 terms of an arithmetic series
of which the first term is a and the fifteenth term is 9a.

 

Let t1 = a

Let t15 = 9a

 

Formula:

\(\begin{array}{|lrcll|} \hline (1) & t_x &=& t_1 + (x-1)\cdot d \\ (2) & t_y &=& t_1 + (y-1)\cdot d \\ (3) & t_z &=& t_1 + (z-1)\cdot d \\ \hline I = (1) - (2) & t_x-t_y &=& d\cdot (x-y) \\ II = (1) - (3) & t_x-t_z &=& d\cdot (x-z) \\ \hline II / I & \frac{t_x-t_z}{t_x-t_y} &=& \frac{d\cdot (x-z)}{d\cdot (x-y)} \\ & \frac{t_x-t_z}{t_x-t_y} &=& \frac{x-z}{x-y} \quad & | \quad \cdot (t_x-t_y) \\ & t_x-t_z &=& (t_x-t_y)\cdot \frac{x-z}{x-y} \\ & t_z &=& t_x-(t_x-t_y)\cdot \frac{x-z}{x-y} \\ & t_z &=& t_x- t_x\cdot (\frac{x-z}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) \\ & t_z &=& t_x\cdot (1-\frac{x-z}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) \\ & t_z &=& t_x\cdot (\frac{x-y-x+z}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) \\ &\mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x\cdot (\frac{z-y}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) } \\ \hline \end{array}\)

 

t35 = ?

\(\begin{array}{|lrclrcl|} \hline x = 1 \quad & t_x &=& t_1 = a \\ y = 15 \quad & t_y &=& t_{15} = 9a \\ z = 35 \quad & t_z &=& t_{35} = \ ? \\ &&&& \mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x\cdot (\frac{z-y}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) } \\ &&&& t_{35} & = & a\cdot ( \frac{35-15}{1-15}) + 9a\cdot (\frac{1-35}{1-15}) \\ &&&& t_{35} & = & a\cdot (\frac{20}{-14}) + 9a\cdot (\frac{-34}{-14}) \\ &&&& t_{35} & = & -a\cdot (\frac{10}{7}) + 9a\cdot (\frac{17}{7}) \\ &&&& t_{35} & = & 9a\cdot (\frac{17}{7}) -a\cdot (\frac{10}{7}) \\ &&&& t_{35} & = & a\cdot (\frac{9\cdot 17}{7}) -a\cdot (\frac{10}{7}) \\ &&&& t_{35} & = & a\cdot (\frac{153}{7}) -a\cdot (\frac{10}{7}) \\ &&&& t_{35} & = & a\cdot (\frac{153-10}{7}) \\ &&&& \mathbf{ t_{35} } &\mathbf{=}& \mathbf{ \frac{143}{7}a }\\ \hline \end{array} \)

 

s35 = ?

\(\begin{array}{|rcll|} \hline s_{35} &=& \left(\frac{t_1+t_{35}}{2} \right)\cdot 35 \quad & | \quad t_1 = a \quad t_{35} = \frac{143}{7}a \\ s_{35} &=& \left(\frac{a+\frac{143}{7}a}{2} \right)\cdot 35 \\ s_{35} &=& \left(\frac{1+\frac{143}{7} }{2} \right)\cdot 35 a\\ s_{35} &=& \left( \frac{150}{14} \right)\cdot 35 a\\ s_{35} &=& 150\cdot \frac{5}{2} a\\ s_{35} &=& 75\cdot 5 a\\ \mathbf{ s_{35} } &\mathbf{=}& \mathbf{375 a}\\ \hline \end{array} \)

 

 

laugh

08.02.2017