Let ABCD be a convex quadrilateral, and let P, Q, R, S, T, U, V, and W be the trisection points of the sides of ABCD, as shown. If the area of quadrilateral ABCD is 180, then find the area of hexagon AQRCUV.
Let ABCD be a convex quadrilateral,
and let P, Q, R, S, T, U, V, and W be the trisection points of the sides of ABCD, as shown.
If the area of quadrilateral ABCD is 180, then find the area of hexagon AQRCUV.
Let AB = a
Let BC = b
Let CD = c
Let DA = d
Let ∠ABC = B
Let ∠UDV = D
AreaABC=absin(B)2AreaCDA=cdsin(D)2AreaABCD=AreaABC+AreaCDA=absin(B)2+cdsin(D)2
AreaQBR=a3b3sin(B)2AreaUDV=c3d3sin(D)2Areahexagon=AreaABCD−AreaQBR−AreaUDVAreahexagon=AreaABCD−a3b3sin(B)2−c3d3sin(D)2Areahexagon=absin(B)2+cdsin(D)2−a3b3sin(B)2−c3d3sin(D)2Areahexagon=absin(B)2(1−19)+cdsin(D)2(1−19)Areahexagon=absin(B)2⋅89+cdsin(D)2⋅89Areahexagon=89⋅(absin(B)2+cdsin(D)2)Areahexagon=89⋅AreaABCDAreahexagon=89⋅180Areahexagon=160
The area of hexagon AQRCUV is 160
Draw AC
Now, because BQ =(1/3) BA and BR =(1/3)BC, Q and R divide BA and BC proportionally...
Thus.....BQ/BA =BQ/BC...and by Euclid, QR is parallel to AC
And <BQR = < BAC and <QBR = <ABC
So, by AA congruency ΔQBR ~ ΔABC
And since AB=3QB.....then the area of ΔABC will be 3^2 = 9 times that of ΔQBR
By similar reasoning, we can show that the area of ΔADC = 9 times that of ΔVDU
And area of ΔABC + area of ΔADC = 180....so....
9 * area of ΔQBR + 9 * area of ΔVDU = 180
9 * [ area of ΔQBR + area of ΔVDU] = 180 ....so...
[ area of ΔQBR + area of ΔVDU] = 180/9 = 20
So......the area of hexagon AQRCUV = 180 - 20 = 160
Let ABCD be a convex quadrilateral,
and let P, Q, R, S, T, U, V, and W be the trisection points of the sides of ABCD, as shown.
If the area of quadrilateral ABCD is 180, then find the area of hexagon AQRCUV.
Let AB = a
Let BC = b
Let CD = c
Let DA = d
Let ∠ABC = B
Let ∠UDV = D
AreaABC=absin(B)2AreaCDA=cdsin(D)2AreaABCD=AreaABC+AreaCDA=absin(B)2+cdsin(D)2
AreaQBR=a3b3sin(B)2AreaUDV=c3d3sin(D)2Areahexagon=AreaABCD−AreaQBR−AreaUDVAreahexagon=AreaABCD−a3b3sin(B)2−c3d3sin(D)2Areahexagon=absin(B)2+cdsin(D)2−a3b3sin(B)2−c3d3sin(D)2Areahexagon=absin(B)2(1−19)+cdsin(D)2(1−19)Areahexagon=absin(B)2⋅89+cdsin(D)2⋅89Areahexagon=89⋅(absin(B)2+cdsin(D)2)Areahexagon=89⋅AreaABCDAreahexagon=89⋅180Areahexagon=160
The area of hexagon AQRCUV is 160