Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
4006
4
avatar

Let ABCD be a convex quadrilateral, and let P, Q, R, S, T, U, V, and W be the trisection points of the sides of ABCD, as shown. If the area of quadrilateral ABCD is 180, then find the area of hexagon AQRCUV.

 

 Feb 12, 2017

Best Answer 

 #2
avatar+26397 
+16

Let ABCD be a convex quadrilateral,

and let P, Q, R, S, T, U, V, and W be the trisection points of the sides of ABCD, as shown. 

If the area of quadrilateral ABCD is 180, then find the area of hexagon AQRCUV.

 

Let AB = a
Let BC = b
Let CD = c
Let DA = d

Let ABC = B
Let UDV = D

 

AreaABC=absin(B)2AreaCDA=cdsin(D)2AreaABCD=AreaABC+AreaCDA=absin(B)2+cdsin(D)2

 

AreaQBR=a3b3sin(B)2AreaUDV=c3d3sin(D)2Areahexagon=AreaABCDAreaQBRAreaUDVAreahexagon=AreaABCDa3b3sin(B)2c3d3sin(D)2Areahexagon=absin(B)2+cdsin(D)2a3b3sin(B)2c3d3sin(D)2Areahexagon=absin(B)2(119)+cdsin(D)2(119)Areahexagon=absin(B)289+cdsin(D)289Areahexagon=89(absin(B)2+cdsin(D)2)Areahexagon=89AreaABCDAreahexagon=89180Areahexagon=160

 

The area of hexagon AQRCUV is 160

 

laugh

 Feb 13, 2017
 #1
avatar+130491 
+7

Draw AC

Now, because BQ  =(1/3) BA and BR =(1/3)BC, Q and R  divide BA and BC proportionally...

Thus.....BQ/BA  =BQ/BC...and by Euclid,  QR is parallel to AC

And <BQR = < BAC    and <QBR  = <ABC

So, by AA  congruency ΔQBR ~ ΔABC

 

And since AB=3QB.....then the area of ΔABC  will be 3^2  = 9 times that of ΔQBR

 

By similar reasoning, we can show that the area of ΔADC  = 9 times that of ΔVDU

 

And  area of ΔABC +  area of ΔADC  = 180....so....

 

9 * area of ΔQBR + 9 * area of ΔVDU  = 180

 

9 *  [ area of ΔQBR +  area of ΔVDU]  = 180     ....so...

 

[ area of ΔQBR +  area of ΔVDU]  = 180/9  = 20

 

So......the area of hexagon AQRCUV  =  180  -  20  =  160

 

 

cool cool cool

 Feb 12, 2017
 #2
avatar+26397 
+16
Best Answer

Let ABCD be a convex quadrilateral,

and let P, Q, R, S, T, U, V, and W be the trisection points of the sides of ABCD, as shown. 

If the area of quadrilateral ABCD is 180, then find the area of hexagon AQRCUV.

 

Let AB = a
Let BC = b
Let CD = c
Let DA = d

Let ABC = B
Let UDV = D

 

AreaABC=absin(B)2AreaCDA=cdsin(D)2AreaABCD=AreaABC+AreaCDA=absin(B)2+cdsin(D)2

 

AreaQBR=a3b3sin(B)2AreaUDV=c3d3sin(D)2Areahexagon=AreaABCDAreaQBRAreaUDVAreahexagon=AreaABCDa3b3sin(B)2c3d3sin(D)2Areahexagon=absin(B)2+cdsin(D)2a3b3sin(B)2c3d3sin(D)2Areahexagon=absin(B)2(119)+cdsin(D)2(119)Areahexagon=absin(B)289+cdsin(D)289Areahexagon=89(absin(B)2+cdsin(D)2)Areahexagon=89AreaABCDAreahexagon=89180Areahexagon=160

 

The area of hexagon AQRCUV is 160

 

laugh

heureka Feb 13, 2017
 #3
avatar+130491 
+5

I like the trig approach, heureka......!!!!!

 

 

 

cool cool cool

 Feb 13, 2017
 #4
avatar+26397 
0

Thank you very much, CPhill !

 

laugh

heureka  Feb 13, 2017

0 Online Users