heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
0

I have this formula that works well to convert wire gauge to mm:

mm dia = 0.127 * 92 ^ ((36-AWG)/39)

 

Following this, the same source offers the following as an inverse formula(mm to gauge):

AWG = -(ln (dia. mm/0.127) / (ln (92) * 39) – 36)

 

diamm=0.12792(36AWG39)AWG= ?

 

diamm=0.12792(36AWG39)|:0.127diamm0.127=92(36AWG39)|ln()ln(diamm0.127)=ln(92(36AWG39))ln(diamm0.127)=(36AWG39)ln(92)ln(diamm0.127)=(36AWG)ln(92)39|39ln(92)39ln(92)ln(diamm0.127)=36AWG|+AWGAWG+39ln(92)ln(diamm0.127)=36|39ln(92)ln(diamm0.127)AWG=3639ln(92)ln(diamm0.127)

 

 

laugh

08.11.2016
 #2
avatar+26396 
+5

 Help

 

84x+2>5122x816x+884x+2>5122x824x+2|512=8384x+2>832x824x+284x+2>86x824x+284x+2>86x24x+24x+2>6x24x+234x+2>6x|:34x+2>2x

 

Let's find the domain:

4x+20|24x2|:4x12

 

The domain is [12,)

 

case differentiation

1. x0

4x+2>2x|square both sides4x+2>4x2|4x2>4x24x|:412>x2x12>(x12)214|+1412+14>(x12)234>(x12)2|32>|x12||x12|<3232<x12<32|+1232+12<x12+12<32+12132<x<1+32

 

case differentiation
2. x < 0 , because the domain is x12

x<0the domain is x12 or 12x12x<04x+20>2x<0|always true

 

together:

132<x<1+3212x<012x<1+32

 

 

laugh

07.11.2016
 #10
avatar+26396 
+5

Please Help!!

 

Formula:

xlogx(y)=y|logy()logy(xlogx(y))=logy(y)|logy(y)=1logy(xlogx(y))=1logx(y)logy(x)=1

 

We substitute:

loga+b(m)=1logm(a+b)logab(m)=1logm(ab)

 

So:

loga+b(m)+logab(m)2loga+b(m)logab(m)loga+b(m)=1logm(a+b)logab(m)=1logm(ab)=1logm(a+b)+1logm(ab)21logm(a+b)1logm(ab)=logm(ab)+logm(a+b)logm(a+b)logm(a+b)21logm(a+b)1logm(ab)=logm[(ab)(a+b)]logm(a+b)logm(a+b)21logm(a+b)1logm(ab)=logm[(a2b2)]logm(a+b)logm(a+b)21logm(a+b)1logm(ab)|a2b2=m2=logm(m2)logm(a+b)logm(a+b)21logm(a+b)1logm(ab)=2logm(m)logm(a+b)logm(a+b)21logm(a+b)1logm(ab)|logm(m)=1=2logm(a+b)logm(a+b)21logm(a+b)1logm(ab)=0

 

 

 

laugh

07.11.2016
 #3
avatar+26396 
0

Ich benötige Hilfe bei der Berechnung des Goldenen Schnittes. Ich weiß das a sich zu b verhält wie a+b zu a, also a/b = (a+b)/a. Jetzt ist nur die Frage wie berechne ich denn b, wenn ich nur a habe. Auflösen der Gleichung ist mir nicht gelungen.

 

ab=a+baGegeben: aGesucht: b

 

ab=a+baab=aa+baab=1+baab=1+1ab|Goldene Schnitt =ab=φφ=1+1φ|1φ1=1φ|!!!

 

Die Berechnung des goldenen Schnittes: φ

φ1=1φ|φφ2φ=1|1φ2φ1=0φ1,2=1±14(1)2φ1,2=1±52φ1=φ=1+52=1.61803398875φ2=152=1φ=0.61803398875

 

Die Berechnung von: b

ab=φφ=ab|bbφ=a|:φb=aφb1=aφ1|φ1=φb1=aφb1=a1φ|1φ=φ1b1=(φ1)ab2=aφ2|φ2=1φb2=a1φ|1φ=(φ1)=1φb2=a1φb2=φa

 

 

laugh

07.11.2016
 #2
avatar+26396 
+10

Express

P(z)=z4z3+z2+2a

as a product of two real quadratic factors given that 1+i is a root of P(z) and a is a real number.

 

Let z1=1+iIf z1 is a root of P(z) then (zz1)=(z(1+i)) divides P(z)If (1+i) is a root of P(z) then the complex conjugate (1i)=z2 is a root of P(z)If z2 is a root of P(z) then (zz2)=(z(1i)) divides P(z)The first real quadratic factor is (z(1+i))(z(1i))=[(z1)i][(z1)+i]=(z1)2i2=(z1)2+1=z22z+1+1=z22z+2P(1+i)=0(1+i)4(1+i)3+(1+i)2+2a=0(1+i)2[(1+i)2(1+i)+1]+2a=0(1+i)2[(1+i)2i]+2a=0(1+2i+i2)(1+2i+i2i)+2a=0(1+2i1)(1+2i1i)+2a=0(2i)(i)+2a=02i2+2a=02+2a=02a=2a=1also P(1i)=0a=1The second real quadratic factor is z4z3+z2+2:(z22z+2)=z2+z+1so z4z3+z2+2=(z22z+2)(z2+z+1)

.
02.11.2016