heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26387 
0
08.11.2016
 #2
avatar+26387 
+5

 Help

 

\(\begin{array}{|rcll|} \hline 8^{ \sqrt{4x+2} } > \dfrac{512^{2x}} { 8^{ \sqrt{16x+8} } } \\ 8^{ \sqrt{4x+2} } > \dfrac{512^{2x}} { 8^{ 2\cdot \sqrt{4x+2} } } \quad & | \quad512 = 8^3 \\ 8^{ \sqrt{4x+2} } > \dfrac{8^{3\cdot 2x}} { 8^{ 2\cdot \sqrt{4x+2} } } \\ 8^{ \sqrt{4x+2} } > \dfrac{8^{6x}} { 8^{ 2\cdot \sqrt{4x+2} } } \\ 8^{ \sqrt{4x+2} } > 8^{6x-2\cdot \sqrt{4x+2} } \\ \sqrt{4x+2} > 6x-2\cdot \sqrt{4x+2} \\ 3\cdot \sqrt{4x+2} > 6x \quad & | \quad : 3\\ \sqrt{4x+2} > 2x \\ \hline \end{array}\)

 

Let's find the domain:

\( \begin{array}{|rcll|} \hline 4x+2 &\ge & 0 \quad & | \quad -2\\ 4x &\ge & -2 \quad & | \quad : 4 \\ x &\ge & -\frac12 \\ \hline \end{array} \)

 

The domain is \([-\frac12, \infty)\)

 

case differentiation

1. \( x\ge 0\)

\(\begin{array}{|rcll|} \hline \sqrt{4x+2} &>& 2x \quad & | \quad \text{square both sides}\\ 4x+2 &>& 4x^2 \quad & | \quad -4x \\ 2 &>& 4x^2-4x \quad & | \quad :4 \\ \frac12 &>& x^2-x \\ \frac12 &>& \left(x-\frac12 \right)^2-\frac14 \quad & | \quad + \frac14\\ \frac12+ \frac14 &>& \left(x-\frac12 \right)^2 \\ \frac34 &>& \left(x-\frac12 \right)^2 \quad & | \quad \sqrt{ } \\ \frac{\sqrt{3}}{2} &>& | x-\frac12 | \\ | x-\frac12 | &<& \frac{\sqrt{3}}{2} \\ \Rightarrow \quad - \frac{\sqrt{3}}{2} &<& x-\frac12 < \frac{\sqrt{3}}{2} \quad & | \quad +\frac12 \\ - \frac{\sqrt{3}}{2} +\frac12 &<& x-\frac12 +\frac12 < \frac{\sqrt{3}}{2} +\frac12 \\ \frac{1-\sqrt{3}}{2} &<& x < \frac{1+\sqrt{3}}{2} \\ \hline \end{array}\)

 

case differentiation
2. x < 0 , because the domain is \(x \ge -\frac12\)

\(\begin{array}{|rcll|} \hline x &<& 0 \\ \text{the domain is } x &\ge& -\frac12 \text{ or } \\ -\frac12 & \le& x \\ \Rightarrow \quad -\frac12 & \le & x < 0 \\\\ \underbrace{\sqrt{4x+2}}_{\ge 0} &>& \underbrace{2x}_{<0} \quad & | \quad \text{always true}\\ \hline \end{array} \)

 

together:

\(\begin{array}{|rcll|} \hline \frac{1-\sqrt{3}}{2} &<& x < \frac{1+\sqrt{3}}{2} \\ -\frac12 & \le & x < 0 \\\\ \mathbf{ -\frac12 } & \mathbf{ \le } & \mathbf{ x < \frac {1+\sqrt{3}}{2} } \\ \hline \end{array}\)

 

 

laugh

07.11.2016
 #10
avatar+26387 
+5

Please Help!!

 

Formula:

\(\begin{array}{|rcll|} \hline x^{\log_x(y)} &=& y \quad &|\quad \log_y() \\ \log_y(x^{\log_x(y)}) &=& \log_y(y) \quad &|\quad \log_y(y)=1 \\ \log_y(x^{\log_x(y)}) &=& 1 \\ \mathbf{\log_x(y)\cdot \log_y(x) } &\mathbf{=} & \mathbf{1} \\ \hline \end{array} \)

 

We substitute:

\(\begin{array}{|rcll|} \hline \log_{a+b}(m) &=& \dfrac{1 }{\log_{m}(a+b)} \\ \log_{a-b}(m) &=& \dfrac{1 }{\log_{m}(a-b)} \\ \hline \end{array}\)

 

So:

\(\begin{array}{|lcll|} \hline \log_{a+b}(m) + \log_{a-b}(m) -2\cdot \log_{a+b}(m) \cdot \log_{a-b}(m) \\ & \log_{a+b}(m) = \dfrac{1 }{\log_{m}(a+b)} \\ & \log_{a-b}(m) = \dfrac{1 }{\log_{m}(a-b)} \\ = \dfrac{1}{\log_{m}(a+b)} + \dfrac{1}{\log_{m}(a-b)} -2\cdot \dfrac{1}{\log_{m}(a+b)} \cdot \dfrac{1}{\log_{m}(a-b)} \\\\ = \dfrac{\log_{m}(a-b)+\log_{m}(a+b)}{\log_{m}(a+b)\cdot \log_{m}(a+b) } -2\cdot \dfrac{1}{\log_{m}(a+b)} \cdot \dfrac{1}{\log_{m}(a-b)} \\\\ = \dfrac{\log_{m}[(a-b)\cdot(a+b)] }{\log_{m}(a+b)\cdot \log_{m}(a+b) } -2\cdot \dfrac{1}{\log_{m}(a+b)} \cdot \dfrac{1}{\log_{m}(a-b)} \\\\ = \dfrac{\log_{m}[(a^2-b^2)] }{\log_{m}(a+b)\cdot \log_{m}(a+b) } -2\cdot \dfrac{1}{\log_{m}(a+b)} \cdot \dfrac{1}{\log_{m}(a-b)} \quad &|\quad a^2-b^2 = m^2\\\\ = \dfrac{\log_{m}(m^2) }{\log_{m}(a+b)\cdot \log_{m}(a+b) } -2\cdot \dfrac{1}{\log_{m}(a+b)} \cdot \dfrac{1}{\log_{m}(a-b)} \\\\ = \dfrac{2\cdot \log_{m}(m) }{\log_{m}(a+b)\cdot \log_{m}(a+b) } -2\cdot \dfrac{1}{\log_{m}(a+b)} \cdot \dfrac{1}{\log_{m}(a-b)} \quad &|\quad \log_{m}(m) = 1\\\\ = \dfrac{2 }{\log_{m}(a+b)\cdot \log_{m}(a+b) } -2\cdot \dfrac{1}{\log_{m}(a+b)} \cdot \dfrac{1}{\log_{m}(a-b)} \\\\ = 0 \\ \hline \end{array} \)

 

 

 

laugh

07.11.2016
 #3
avatar+26387 
0

Ich benötige Hilfe bei der Berechnung des Goldenen Schnittes. Ich weiß das a sich zu b verhält wie a+b zu a, also a/b = (a+b)/a. Jetzt ist nur die Frage wie berechne ich denn b, wenn ich nur a habe. Auflösen der Gleichung ist mir nicht gelungen.

 

\(\begin{array}{|lr|} \hline \begin{array}{|rcll|} \hline \dfrac{ a }{b} &=& \dfrac{a+b}{a}\\ \hline \end{array} &\text{Gegeben: a} &\text{Gesucht: b}\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{ a }{b} &=& \dfrac{a+b}{a} \\ \dfrac{ a }{b} &=& \dfrac{a}{a}+\dfrac{b}{a} \\ \dfrac{ a }{b} &=& 1+\dfrac{b}{a} \\ \dfrac{ a }{b} &=& 1+ \frac{1}{\frac{a}{b}} \quad & | \quad \text{Goldene Schnitt } = \frac{a}{b} = \varphi\\ \varphi &=& 1+ \dfrac{1}{\varphi} \quad & | \quad -1\\ \mathbf{\varphi -1} &\mathbf{=}&\mathbf{ {\dfrac{1}{\varphi}} }\quad & | \quad \mathbf{\color{red}!!!}\\ \hline \end{array} \)

 

Die Berechnung des goldenen Schnittes: \(\varphi\)

\(\begin{array}{|rcll|} \hline \varphi -1 &=& \dfrac{1}{\varphi} \quad & | \quad \cdot \varphi \\ \varphi^2 -\varphi &=& 1 \quad & | \quad -1 \\ \varphi^2 -\varphi -1 &=& 0 \\\\ \varphi_{1,2} &=& \dfrac{1\pm \sqrt{1-4\cdot(-1)} }{2} \\ \varphi_{1,2} &=& \dfrac{1\pm \sqrt{5} }{2} \\\\ \mathbf{\varphi_1}=\mathbf{\varphi} & \mathbf{=} & \mathbf{\dfrac{1+ \sqrt{5} }{2} = 1.61803398875\dots} \\ \mathbf{\varphi_2} & \mathbf{=} & \mathbf{\dfrac{1- \sqrt{5} }{2} = 1-\varphi = -0.61803398875\dots} \\ \hline \end{array} \)

 

Die Berechnung von: b

\(\begin{array}{|rcll|} \hline \dfrac{a}{b} &= \varphi \\ \varphi &=& \dfrac{a}{b} \quad & | \quad \cdot b \\ b\cdot \varphi &=& a \quad & | \quad : \varphi \\ b &=& \dfrac{a}{\varphi} \\\\ b_1 &=& \dfrac{a}{\varphi_1} \quad & | \quad \varphi_1 = \varphi \\ b_1 &=& \dfrac{a}{\varphi} \\ b_1 &=& a\cdot \dfrac{1}{\varphi} \quad & | \quad \dfrac{1}{\varphi} = \varphi -1 \\ \mathbf{b_1} &\mathbf{=}& \mathbf{(\varphi -1 )\cdot a} \\\\ b_2 &=& \dfrac{a}{\varphi_2} \quad & | \quad \varphi_2 = 1-\varphi \\ b_2 &=& \dfrac{a}{1-\varphi } \quad & | \quad -\dfrac{1}{\varphi} = -(\varphi -1) = 1-\varphi \\ b_2 &=& \dfrac{a}{\dfrac{-1}{\varphi} } \\ \mathbf{b_2} &\mathbf{=}& \mathbf{ -\varphi\cdot a }\\ \hline \end{array}\)

 

 

laugh

07.11.2016