heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26387 
0

The length of a rectangular garden is double it's width.

The area of the garden is 162 m squared.

If the garden wishes to construct a fence diagonally across the garden,

how much fencing(in meters) will be required?

round your answer to the nearest meter.

 

Let d = diagonal

Let A = 162 m2

Let L = length

Let w = width

 

\(\begin{array}{|rcll|} \hline A &=& L\cdot w \quad & | \quad L = 2w \\ A &=& 2w\cdot w \\ A &=& 2w^2 \\ A &=& 2w^2 \quad & | \quad :2 \\ \frac{A}{2} &=& w^2 \\ \mathbf{w^2} & \mathbf{=} & \mathbf{\frac{A}{2}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline d &=& \sqrt{L^2+w^2} \quad & | \quad L = 2w \\ d &=& \sqrt{(2w)^2+w^2} \\ d &=& \sqrt{4w^2+w^2} \\ d &=& \sqrt{5w^2} \quad & | \quad w^2=\frac{A}{2} \\ d &=& \sqrt{5\cdot \frac{A}{2}} \quad & | \quad A = 162\ m^2 \\ d &=& \sqrt{5\cdot \frac{162}{2}} \\ d &=& \sqrt{5\cdot 81} \quad & | \quad 81 = 9^2\\ d &=& \sqrt{5\cdot 9^2} \\ \mathbf{d} &\mathbf{=}& \mathbf{9\cdot \sqrt{5}\ m} \\ d &=& 20.1246117975\dots\ m \\ d &\approx & 20\ m \\ \hline \end{array} \)

 

how much fencing(in meters) will be required?  \(20\ m\)

 

\(\begin{array}{|rcll|} \hline d &=& \sqrt{5w^2} \\ d^2 &=& 5w^2 \\ 5w^2 &=& d^2 \quad & | \quad : 5\\ w^2 &=& \frac{d^2}{5} \\ w &=& \frac{d}{\sqrt{5}} \quad & | \quad 9\cdot \sqrt{5} \\ w &=& \frac{9\cdot \sqrt{5}}{\sqrt{5}} \\ \mathbf{w} &\mathbf{=}& \mathbf{9\ m} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline L &=& 2w \quad & | \quad w = 9 \\ L &=& 2\cdot 9\\ \mathbf{L} &\mathbf{=}& \mathbf{18\ m} \\ \hline \end{array}\)

 

laugh

27.10.2016
 #5
avatar+26387 
+10

You mean that there is a maximum of 8 steps if the element exists in the array,

but 9 steps if the element does not exist?

 

Hello Melody!

 

YES!

 

\(\begin{array}{|lrcll|} \hline & \text{We search number 1:} & & \text{set } \{1,\dots,193 \}\\\\ (1) & 1 > \lfloor \frac{1+193}{2} \rfloor = 97 & no & \text{new set } \{1,\dots,97 \}\\ (2) & 1 > \lfloor \frac{1+97}{2} \rfloor = 49 & no & \text{new set } \{1,\dots,49 \}\\ (3) & 1 > \lfloor \frac{1+49}{2} \rfloor = 25 & no & \text{new set } \{1,\dots,25 \}\\ (4) & 1 > \lfloor \frac{1+25}{2} \rfloor = 13 & no & \text{new set } \{1,\dots,13 \}\\ (5) & 1 > \lfloor \frac{1+13}{2} \rfloor = 7 & no & \text{new set } \{1,\dots,7 \}\\ (6) & 1 > \lfloor \frac{1+7}{2} \rfloor = 4 & no & \text{new set } \{1,\dots,4 \}\\ (7) & 1 > \lfloor \frac{1+4}{2} \rfloor = 2 & no & \text{new set } \{1,2 \}\\ (8) & 1 > \lfloor \frac{1+2}{2} \rfloor = 1 & no & \text{we have found number 1 in the last set}\\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline & \text{We search number 1.5:} & & \text{set } \{1,\dots,193 \}\\\\ (1) & 1.5 > \lfloor \frac{1+193}{2} \rfloor = 97 & no & \text{new set } \{1,\dots,97 \}\\ (2) & 1.5 > \lfloor \frac{1+97}{2} \rfloor = 49 & no & \text{new set } \{1,\dots,49 \}\\ (3) & 1.5 > \lfloor \frac{1+49}{2} \rfloor = 25 & no & \text{new set } \{1,\dots,25 \}\\ (4) & 1.5 > \lfloor \frac{1+25}{2} \rfloor = 13 & no & \text{new set } \{1,\dots,13 \}\\ (5) & 1.5 > \lfloor \frac{1+13}{2} \rfloor = 7 & no & \text{new set } \{1,\dots,7 \}\\ (6) & 1.5 > \lfloor \frac{1+7}{2} \rfloor = 4 & no & \text{new set } \{1,\dots,4 \}\\ (7) & 1.5 > \lfloor \frac{1+4}{2} \rfloor = 2 & no & \text{new set } \{1,2 \}\\ (8) & 1.5 > \lfloor \frac{1+2}{2} \rfloor = 1 & yes & \text{new set } \{ 2 \}\\ (9) & 1.5 = 2 & no & \text{we have not found number 1.5 in the last set}\\ \hline \hline \end{array}\)

 

laugh

26.10.2016
 #4
avatar+26387 
+5

1. ( 65pt-65t+13p-13 ) / ( 65p^2 *t-65pt+13p^2 -13p )  = 1/p^2   ?

2. ( 9p^2-9y^2 ) / ( 18y^2-36py+18p^2 ) = 1/2py      ?

3. (12*(11*w-g)*s^3 *y^2 *m^5 ) / ( -6*s^5 *y^3 *m^4 (g-11*w)  ) = -2m/s^2 *y  ?

 

 

1.

\(\begin{array}{|rcll|} \hline && \dfrac{ 65pt-65t + 13p-13 } { 65\cdot p^2\cdot t-65pt + 13p^2 -13p } \\\\ &=& \dfrac{ 65pt-6t + 13p-13 } { p\cdot(65pt-65t + 13p -13) } \\\\ &=& \dfrac{1}{p} \cdot \frac{ 65pt-65t + 13p-13 } { 65pt-65t + 13p -13 } \\\\ &=& \dfrac{1}{p} \cdot 1 \\\\ &=& \dfrac{1}{p} \\ \hline \end{array}\)

 

 

2.

\(\begin{array}{|rcll|} \hline && \dfrac{ 9p^2-9y^2 }{ 18y^2-36py+18p^2 } \\\\ &=& \dfrac{ 9\cdot (p^2-y^2) }{ 18\cdot ( y^2-2py+p^2 ) } \\\\ &=& \dfrac{ p^2-y^2 }{ 2\cdot ( y^2-2py+p^2 ) } \quad &| \quad (p^2-y^2) = (p-y)(p+y)\\\\ &=& \dfrac{ (p-y)(p+y) }{ 2\cdot ( y^2-2py+p^2 ) } \quad &| \quad y^2-2py+p^2 = (y-p)^2 \\\\ &=& \dfrac{ (p-y)(p+y) }{ 2\cdot ( y-p )^2 } \\\\ &=& \dfrac{ (p-y)(p+y) }{ 2\cdot ( y-p )(y-p) } \\\\ &=& \dfrac{ (p+y) }{ 2\cdot (y-p) } \\ \hline \end{array}\)

 

3.

\(\begin{array}{|rcll|} \hline && \dfrac{ 12\cdot(11w-g)\cdot s^3 \cdot y^2 \cdot m^5 }{ -6\cdot s^5 \cdot y^3 \cdot m^4 \cdot (g-11w) } \quad &| \quad -(g-11w) = (11w-g)\\\\ &=& \dfrac{ 12\cdot(11w-g)\cdot s^3 \cdot y^2 \cdot m^5 }{ 6\cdot s^5 \cdot y^3 \cdot m^4 \cdot (11w-g) } \\\\ &=& \dfrac{ 12\cdot(11w-g)\cdot s^3 \cdot y^2 \cdot m^5 }{ 6\cdot (11w-g) \cdot s^5 \cdot y^3 \cdot m^4 } \\\\ &=& \dfrac{ 12 \cdot s^3 \cdot y^2 \cdot m^5 }{ 6 \cdot s^5 \cdot y^3 \cdot m^4 } \\\\ &=& \dfrac{ 2 \cdot s^3 \cdot y^2 \cdot m^5 }{ s^5 \cdot y^3 \cdot m^4 } \\\\ &=& \dfrac{ 2 \cdot m^{5-4} }{ s^{5-3} \cdot y^{3-2} } \\\\ &=& \dfrac{ 2 \cdot m }{ s^2 \cdot y } \\\\ \hline \end{array}\)

 

 

laugh

24.10.2016
 #2
avatar+26387 
+5

\sqrt{15/4-2i}

 

Ohne Fehler, Sorry!

 

siehe: https://de.wikipedia.org/wiki/Quadratwurzel

 

Ist \(z\) in kartesischen Koordinaten gegeben, also \( z=x+iy\) mit reellen Zahlen \(x\)  und \(y\), dann ergibt sich

für den Hauptwert der Quadratwurzel, wobei die Funktion   \(\operatorname {sgn^{+}} \) für negative \(y\) den Wert −1 und ansonsten ( also auch für \(y=0\) und damit anders als bei der Vorzeichenfunktion \( \operatorname {sgn}\) ) den Wert 1 hat:

 

 

\(\begin{array}{|rcll|} \hline z &=& a+bi \qquad |z| = \sqrt{a^2+b^2} \\\\ \sqrt{z} &=& \sqrt{ \frac{|z|+a}{2} }+ i\cdot \text{sgn}(b)\cdot \sqrt{ \frac{|z|-a}{2} } \\ \qquad sgn(b) &=& \text{Vorzeichen von b}\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline z &=& \frac{15}{4}-2i \qquad a= \frac{15}{4} \qquad b = -2 \qquad sgn(b)= -1 \\\\ |z| &=& \sqrt{\left(\frac{15}{4} \right)^2+(-2)^2} \\ &=& \sqrt{\left(\frac{15^2}{4^2} \right)^2+4} \\ &=& \sqrt{\left(\frac{15^2}{4^2} \right)^2+4\cdot \frac{4^2}{4^2}} \\ &=& \sqrt{\frac{15^2+4^3}{4^2} }\\ &=& \frac{ \sqrt{15^2+4^3} } {4} \\ &=& \frac{ \sqrt{289} } {4} \\ \mathbf{|z|} &\mathbf{=}& \mathbf{\frac{17} {4}} \\\\ \sqrt{z} &=& \sqrt{ \frac{|z|+a}{2} }+ i\cdot \text{sgn}(b)\cdot \sqrt{ \frac{|z|-a}{2} } \\ \sqrt{\frac{15}{4}-2i} &=& \sqrt{ \frac{\frac{17} {4}+\frac{15}{4}}{2} }+ i\cdot(-1)\cdot \sqrt{ \frac{\frac{17} {4}-\frac{15}{4}}{2} } \\ &=& \sqrt{ \frac{\frac{17+15} {4} } {2} }- i \sqrt{ \frac{\frac{17-15} {4} } {2} } \\ &=& \sqrt{ \frac{\frac{32} {4} } {2} }- i \sqrt{ \frac{\frac{2} {4} } {2} } \\ &=& \sqrt{ \frac{ 32 } {2\cdot 4} }- i \sqrt{ \frac{2} {2\cdot 4} } \\ &=& \sqrt{ \frac{ 32 } {8} }- i \sqrt{ \frac{2} {8} } \\ &=& \sqrt{ 4 }- i \sqrt{ \frac{1} {4} } \\ &=& 2- i\cdot \frac12 \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \text{alle zweiten Wurzeln von } \frac{15}{4}-2i:\\ \mathbf{w_1} &\mathbf{=}&\mathbf{ 2 - i\cdot \frac12} \\ w_2 &=& -w_1 \\ w_2 &=& -(2 - i)\cdot \frac12 \\ \mathbf{w_2} &=& \mathbf{-2 + i\cdot \frac12} \\ \hline \end{array} \)

 

blushlaugh

24.10.2016