heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26387 
+10
02.11.2016
 #2
avatar+26387 
0

roots of equation x^3+3x^2+3x+3

 

\(\small{ \begin{array}{|lrcll|} \hline & x^3+3x^2+3x+3 &=& 0 \quad &|\quad x^3+3x^2+3x+1 = (x+1)^3 \\ & (x+1)^3 +2 &=& 0 \\ & (x+1)^3 &=& -2 \\ & x+1 &=& \sqrt[3]{-2} \\ & x &=& \sqrt[3]{-2} -1 \\\\ (1) & \sqrt[3]{-2} &=& \sqrt[3]{2} \cdot (\cos(\frac{\pi}{3}) + i \cdot \sin(\frac{\pi}{3})) \quad &|\quad \tan{\varphi} = \frac{0}{-2}~ \Rightarrow ~ \varphi = \pi \\ & \sqrt[3]{-2} &=& \sqrt[3]{2} \cdot (\frac12+ i \cdot \frac{\sqrt{3}}{2} ) \\ & \sqrt[3]{-2} &=& \sqrt[3]{2} \cdot \frac12+ i \cdot \frac{\sqrt{3}}{2} \cdot \sqrt[3]{2} \\ & x_1 = \sqrt[3]{-2}-1 &=& \sqrt[3]{2} \cdot \frac12 - 1 + i \cdot \frac{\sqrt{3}}{2} \cdot \sqrt[3]{2} \\ & \mathbf{x_1} &\mathbf{=}& \mathbf{-0.37003947505 + i \cdot 1.09112363597 }\\\\ (2) & \sqrt[3]{-2} &=& \sqrt[3]{2} \cdot (\cos(\frac{\pi}{3}+\frac23 \pi) + i \cdot \sin(\frac{\pi}{3}+\frac23 \pi)) \\ & \sqrt[3]{-2} &=& \sqrt[3]{2} \cdot (\cos(\pi) + i \cdot \sin(\pi)) \\ & \sqrt[3]{-2} &=& \sqrt[3]{2} \cdot (-1+ i \cdot 0 ) \\ & \sqrt[3]{-2} &=& -\sqrt[3]{2} \\ & x_2 = \sqrt[3]{-2}-1 &=&-\sqrt[3]{2} - 1 \\ & \mathbf{x_2} &\mathbf{=}& \mathbf{-2.25992104989} \\\\ (3) & \sqrt[3]{-2} &=& \sqrt[3]{2} \cdot (\cos(\frac{\pi}{3}+2\cdot \frac23 \pi) + i \cdot \sin(\frac{\pi}{3}+2\cdot \frac23 \pi)) \\ & \sqrt[3]{-2} &=& \sqrt[3]{2} \cdot (\cos(\frac53 \pi) + i \cdot \sin(\frac53 \pi)) \\ & \sqrt[3]{-2} &=& \sqrt[3]{2} \cdot (\frac12- i \cdot \frac{\sqrt{3}}{2} ) \\ & \sqrt[3]{-2} &=& \sqrt[3]{2} \cdot \frac12- i \cdot \frac{\sqrt{3}}{2} \cdot \sqrt[3]{2} \\ & x_3 = \sqrt[3]{-2}-1 &=& \sqrt[3]{2} \cdot \frac12 - 1 - i \cdot \frac{\sqrt{3}}{2} \cdot \sqrt[3]{2} \\ & \mathbf{x_3} &\mathbf{=}& \mathbf{-0.37003947505 - i \cdot 1.09112363597} \\\\ \hline \end{array} } \)

 

 

laugh

31.10.2016
 #1
avatar+26387 
0

If you fold up the sides the container holds exactly 1L. {nl} Whats the length of a?

 

 

 

\(\begin{array}{|rclrcl|} \hline B_{\triangle} &=& \frac{a}{2}\cdot h_{\triangle} & \quad h_{\triangle}^2 + (\frac{a}{2})^2 &=& a^2\\ & & & \quad h_{\triangle}^2 &=& a^2 - (\frac{a}{2})^2 \\ & & & \quad h_{\triangle}^2 &=& a^2 - \frac{a^2}{4} \\ & & & \quad h_{\triangle}^2 &=& \frac{3}{4}a^2 \\ B_{\triangle} &=& \frac{a}{2}\cdot \frac{a}{2}\sqrt{3} & \quad \mathbf{ h_{\triangle} } & \mathbf{=} & \mathbf{\frac{a}{2}\sqrt{3}} \\ \mathbf{B_{\triangle}} &\mathbf{=}& \mathbf{\frac{a^2}{4}\cdot \sqrt{3}} \\ \hline \end{array}\)

 

\(\begin{array}{|rclrcl|} \hline \sin(60^{\circ}) = \frac{a}{2r} &=& \frac{\sqrt{3}} {2} \\ \frac{a}{2r} &=& \frac{\sqrt{3}} {2} \\ \frac{a}{r} &=& \sqrt{3} \\ \frac{r}{a} &=& \frac{1} { \sqrt{3} } \\ \mathbf{r} &\mathbf{=}& \mathbf{\frac{a} { \sqrt{3} }} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline r^2+h^2 &=& a^2 \\ h^2 &=& a^2-r^2 \\ h^2 &=& a^2 -\left(\frac{a} { \sqrt{3} }\right)^2 \\ h^2 &=& a^2 -\frac{a^2} { 3 } \\ h^2 &=& \frac{2}{3}a^2 \\ \mathbf{h} &\mathbf{=}& \mathbf{\frac{\sqrt{2}} {\sqrt{3}}a} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline V &=& \frac{1}{3} \cdot B_{\triangle} \cdot h \qquad &| \qquad \mathbf{ B_{\triangle} = \frac{a^2}{4} \sqrt{3}} \qquad \mathbf{ h=\frac{\sqrt{2}} {\sqrt{3}}a } \\ V &=& \frac{1}{3} \cdot \left( \frac{a^2}{4} \sqrt{3} \right) \cdot \left( \frac{\sqrt{2}} {\sqrt{3}}\cdot a \right) \\ V &=& \frac{1}{3} \cdot \frac{a^2}{4} \cdot \sqrt{2}\cdot a \\ V &=& \frac{\sqrt{2}}{12} \cdot a^3 \\\\ \frac{\sqrt{2}}{12} \cdot a^3 &=& V \\ a^3 &=& \frac{12} {\sqrt{2}} \cdot V \\ a^3 &=& \frac{12} {\sqrt{2}} \cdot V \cdot \frac{\sqrt{2}}{\sqrt{2}} \\ a^3 &=& \frac{12\cdot \sqrt{2} } {2} \cdot V \\ a^3 &=& 6\cdot \sqrt{2} \cdot V \\ \mathbf{a} &\mathbf{=}& \mathbf{\sqrt[3]{6\cdot \sqrt{2} \cdot V}} \qquad &| \qquad V = 1l = 1\ dm^3\\ a & =& \sqrt[3]{6\cdot \sqrt{2} \cdot 1\ dm^3} \\ a & =& \sqrt[3]{8.48528137424\ dm^3} \\ a & =& 2.03964890266\ dm \\ \hline \end{array}\)

 

The length of a is 2.04 dm

 

laugh

27.10.2016