How using L'Hospital's rule?
limx→0((1+x)1xe)1x
Formula: ln(limx→0f(x))=limx→0lnf(x)
1. We take the logarithm:
ln(limx→0((1+x)1xe)1x)=limx→0ln{((1+x)1xe)1x}=limx→01x⋅ln((1+x)1xe)=limx→01x⋅[ln((1+x)1x)−ln(e)]|ln(e)=1=limx→01x⋅[ln((1+x)1x)−1]=limx→01x⋅[1x⋅ln(1+x)−1]=limx→01x⋅[1x⋅ln(1+x)−xx]=limx→01x⋅[ln(1+x)−xx]=limx→0ln(1+x)−xx2|L'Hospital's rule=limx→0(ln(1+x)−x)′(x2)′=limx→011+x−12x=limx→01−1−x1+x2x=limx→0−x1+x2x=limx→0−x2x(1+x)=limx→0−12(1+x)|x=0=−12(1+0)=−12
2. We revert the logarithm:
ln(limx→0((1+x)1xe)1x)=−12eln(limx→0((1+x)1xe)1x)=e−12limx→0((1+x)1xe)1x=e−12=1e12limx→0((1+x)1xe)1x=1√e
