solve for x
In a triangle the sum of the angles are 180∘
So we have:
180∘=90∘+(2x−10)∘+(x+25)∘|−90∘180∘−90∘=(2x−10)∘+(x+25)∘90∘=(2x−10)∘+(x+25)∘90=(2x−10)+(x+25)90=2x−10+x+2590=2x+x−10+2590=3x+15|:330=x+5|−530−5=x25=xx=25First angle: (2x−10)∘=(2⋅25−10)∘=(50−10)∘=40∘Second angle: (x+25)∘=(25+25)∘=50∘
2x - 10 + x +25 =90
3x + 15 = 90
3x =90 - 15
3x = 75
x =75/3
x = 25 degrees, so that the 2 angles are:
2x25 - 10 =40 degrees
25 + 25 =50 degrees
solve for x
In a triangle the sum of the angles are 180∘
So we have:
180∘=90∘+(2x−10)∘+(x+25)∘|−90∘180∘−90∘=(2x−10)∘+(x+25)∘90∘=(2x−10)∘+(x+25)∘90=(2x−10)+(x+25)90=2x−10+x+2590=2x+x−10+2590=3x+15|:330=x+5|−530−5=x25=xx=25First angle: (2x−10)∘=(2⋅25−10)∘=(50−10)∘=40∘Second angle: (x+25)∘=(25+25)∘=50∘