heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+10

Three equal circles with radius r are drawn as shown,
each with its centre on the circumference of the other two circles.
A, B and C are the centres of the three circles.
Prove that an expression for the area of the shaded region is:

 

\(A=\frac{r^2}{2}\left(\pi -\sqrt{3}\right)\)

 

 

\(\begin{array}{|rcll|} \hline A_{\triangle ABC} &=& \frac12 \cdot r \cdot h_{\triangle ABC} \\\\ h_{\triangle ABC}^2 + (\frac{r}{2})^2 &=& r^2 \\ h_{\triangle ABC}^2 + \frac{r^2}{4} &=& r^2 \\ h_{\triangle ABC}^2 = r^2 - \frac{r^2}{4} \\ h_{\triangle ABC}^2 = \frac34 \cdot r^2 \\ h_{\triangle ABC} = \frac{\sqrt{3}}{2} \cdot r \\\\ A_{\triangle ABC} &=& \frac12 \cdot r \cdot h_{\triangle ABC} \\ A_{\triangle ABC} &=& \frac12 \cdot r \cdot \frac{\sqrt{3}}{2} \cdot r \\ \mathbf{A_{\triangle ABC} }&\mathbf{=}& \mathbf{\frac{r^2}{4} \cdot \sqrt{3} }\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline A_{Arc} &=& \pi r^2 \cdot \frac{60^{\circ}} {360^{\circ}} \\ A_{Arc} &=& \frac{\pi r^2} {6} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline A_{\text{shaded region}} &=& 3\cdot (A_{Arc}-A_{\triangle ABC})+A_{\triangle ABC} \\ A_{\text{shaded region}} &=& 3\cdot A_{Arc}-3\cdot A_{\triangle ABC}+A_{\triangle ABC} \\ A_{\text{shaded region}} &=& 3\cdot A_{Arc}-2\cdot A_{\triangle ABC} \\ A_{\text{shaded region}} &=& 3\cdot \frac{\pi r^2} {6}-2\cdot \frac{r^2}{4} \cdot \sqrt{3} \\ A_{\text{shaded region}} &=& \frac{\pi r^2} {2}- \frac{r^2}{2} \cdot \sqrt{3} \\ \mathbf{A_{\text{shaded region}} }&\mathbf{=}& \mathbf{\frac{r^2}{2} \cdot ( \pi- \sqrt{3} )} \\ \hline \end{array}\)

 

 

laugh

21.10.2016
 #3
avatar+26387 
0

e

Given that \((\sqrt{2}x-i\sqrt{3})\) divides P(x) find all roots of P(x)

 

 

\(\begin{array}{|rcll|} \hline P(x) &=& x^6-6x^5+\frac{17}{2}x^4-7x^3+\frac{21}{2}x^2+3x \\ P(x) &=& x\cdot \left( x^5-6x^4+\frac{17}{2}x^3-7x^2+\frac{21}{2}x+3 \right)\\ \hline \end{array} \)

 

If \((\sqrt{2}x-i\sqrt{3})\) divides P(x) then \((\sqrt{2}x+i\sqrt{3}) \) divides P(x)

 

\(\begin{array}{|rcll|} \hline (\sqrt{2}x-i\sqrt{3}) \cdot (\sqrt{2}x+i\sqrt{3}) &=& (\sqrt{2}x)^2 -(i\sqrt{3})^2 \\ &=& 2x^2 -(i^2\cdot 3) \quad &| \quad i^2 = -1 \\ &=& 2x^2 -[(-1)\cdot 3] \\ &=& 2x^2 +3\\ \hline \end{array}\)

 

{nl} \(\begin{array}{rcll} \hline \left( x^5-6x^4+\frac{17}{2}x^3-7x^2+\frac{21}{2}x+3 \right) : 2x^2 + 3 &=& \frac12x^3-3x^2+\frac72x+1\\ \hline \end{array} \)

 

\(\begin{array}{rcll} \Rightarrow P(x) &=& x\cdot (\sqrt{2}x-i\sqrt{3}) \cdot (\sqrt{2}x+i\sqrt{3}) \cdot \left( \frac12x^3-3x^2+\frac72x+1 \right)\\ \end{array}\)

 

test x=2: \(\Rightarrow \frac12x^3-3x^2+\frac72x+1 = 0 \)

 

\(\begin{array}{rcll} \hline \left( \frac12x^3-3x^2+\frac72x+1 \right) : x-2 &=& \frac12x^2-2x-\frac12\\ \hline \end{array}\)

 

\(\begin{array}{rcll} \Rightarrow P(x) &=& x\cdot (\sqrt{2}x-i\sqrt{3}) \cdot (\sqrt{2}x+i\sqrt{3}) \cdot (x-2) \cdot \left( \frac12x^2-2x-\frac12 \right)\\ P(x) &=& x\cdot (\sqrt{2}x-i\sqrt{3}) \cdot (\sqrt{2}x+i\sqrt{3}) \cdot (x-2) \cdot \frac12 \cdot \left( x^2-4x-1 \right)\\ \end{array}\)

 

Roots:

\(\small{ \begin{array}{|lrccccccccc|} \hline P(x)=& 0 &=& x &\cdot& (\sqrt{2}x-i\sqrt{3}) &\cdot& (\sqrt{2}x+i\sqrt{3}) &\cdot& (x-2) \cdot \frac12 \cdot &\left( x^2-4x-1 \right)&\\ \text{1. Root} & && \mathbf{x_1 = 0} \\ \text{2. Root} & & & & & \sqrt{2}x-i\sqrt{3} = 0 \\ & & & & & \sqrt{2}x=i\sqrt{3} \\ & & & & & \mathbf{x_2=i\frac{\sqrt{3} } {\sqrt{2}}} \\ \text{3. Root} & & & & & & & \sqrt{2}x+i\sqrt{3} = 0 \\ & & & & & & & \sqrt{2}x=-i\sqrt{3} \\ & & & & & & & \mathbf{x_3=-i\frac{\sqrt{3} } {\sqrt{2}}} \\ \text{4. Root} & & & & & & & & & x-2=0 \\ & & & & & & & & & \mathbf{x_4=2} \\ \text{5.6. Root} & & & & & & & & & & x^2-4x-1 = 0\\ & & & & & & & & & & x = \frac{4\pm\sqrt{4^2-4\cdot(-1)}}{2} \\ & & & & & & & & & & x = \frac{4\pm\sqrt{4\cdot 5}}{2} \\ & & & & & & & & & & x = \frac{4\pm 2 \sqrt{ 5}}{2} \\ & & & & & & & & & & x = 2\pm \sqrt{ 5} \\ & & & & & & & & & & \mathbf{x_5= 2+ \sqrt{ 5}} \\ & & & & & & & & & & \mathbf{x_6 = 2- \sqrt{ 5}} \\ \hline \end{array} } \)

 

laugh

21.10.2016
 #3
avatar+26387 
0

3.

man travels 196km by train and returns in a car that travels 21km/h faster.

if total journey took 11hrs, find speeds of train and car

 

Let time train = t1

Let time car = t2

\(t_1 + t_2 = 11\ h \\ t_2 = 11 - t_1\)

 

\(\begin{array}{|lrcll|} \hline (1) & v_{\text{train}} \cdot t_1 &=& 196\ km \\ & v_{\text{train}} &=& \frac{196}{t_1} \\\\ (2) & v_{\text{car}} &=& v_{\text{train}} + 21\frac{km}{h} \\ & v_{\text{car}} \cdot t_2 &=& 196\ km \\ & (v_{\text{train}} + 21 ) \cdot t_2 &=& 196 \\ & (\frac{196}{t_1} + 21 ) \cdot t_2 &=& 196 \quad & | \quad t_2 = 11 - t_1\\ & (\frac{196}{t_1} + 21 ) \cdot (11 - t_1) &=& 196 \\ & \frac{196\cdot 11}{t_1} -196 + 21\cdot 11 -21t_1 &=& 196 \quad & | \quad - 196\\ & \frac{196\cdot 11}{t_1} -196 + 21\cdot 11-196 -21t_1 &=& 0\\ & \frac{2156}{t_1} -196 + 21\cdot 11-196 -21t_1 &=& 0\\ & \frac{2156}{t_1} -161 -21t_1 &=& 0 \quad & | \quad \cdot t_1 \\ & \frac{2156}{t_1} -161 -21t_1 &=& 0 \quad & | \quad \cdot t_1 \\ & 2156 -161t_1 -21t_1^2 &=& 0 \quad & | \quad \cdot (-1) \\ & 21t_1^2 + 161t_1 -2156 &=& 0 \\ & t_1 &=& \frac{ -161\pm\sqrt{(-161)^2-4\cdot 21 \cdot(-2156)} } {2\cdot 21} \\ & t_1 &=& \frac{ -161\pm 455 } {42} \\ & t_1 = \frac{ -161+455 } {42} & \text{or} & t_1= \frac{ -161- 455 } {42} \text{ no solution} \\ & \mathbf{t_1 = 7\ h } & & \\\\ & v_{\text{train}} &=& \frac{196}{t_1} \\ & v_{\text{train}} &=& \frac{196}{7} \\ & \mathbf{v_{\text{train}}} &\mathbf{=}& \mathbf{28\ \frac{km}{h}} \\\\ & v_{\text{car}} &=& v_{\text{train}} + 21 \\ & v_{\text{car}} &=& 28 + 21 \\ & \mathbf{v_{\text{car}}} &\mathbf{=}& \mathbf{49\ \frac{km}{h}} \\\\ \hline \end{array} \)

 

laugh

20.10.2016