heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26387 
0

Betrachtet wird die Wachstumsfunktion x → N = N0 ·a^x mit x ∈ IR. Fur x = 3,0 ist N = 14929,92. Fur x = 2,5 ist N = 12441,60. (a) Berechnen Sie N0 und den Wachstumsfaktor a!

Ich weiss wie man sich a ausrechnet wenn man N0 hat, aber wie rechnet man sich N0 aus? Danke im Vorhinein

 

\(\begin{array}{|rcl|} \hline N &=& N_0 \cdot a^x \\ \hline \end{array}\)

 

Wir haben für \(x_1 = 3,0\) ein \(N_1 = 14929,92\)

und wir haben für \( x_2 = 2,5\) ein \(N_2 = 12441,60\)

 

Wir setzen nun diese Werte in die obere Formel ein und erhalten:

\(\begin{array}{|lrcl|} \hline (1): & N_1 &=& N_0 \cdot a^{x_1} \\ (2): & N_2 &=& N_0 \cdot a^{x_2 }\\ \hline \end{array} \)

 

1. Berechnung von a

Wir teilen beide Gleichungen (1) und (2) und \(N_0\) kürzt sich raus!

\(\begin{array}{|rcll|} \hline \frac{ N_1 } {N_2} &=& \frac{ {\color{red}\not}{N_0} \cdot a^{x_1} } { {\color{red}\not}{N_0} \cdot a^{x_2}} \\\\ \dfrac{ N_1 } {N_2} &=& \dfrac{ a^{x_1} } { a^{x_2}} \\\\ \dfrac{ N_1 } {N_2} &=& a^{x_1} \cdot a^{-x_2} \\\\ \dfrac{ N_1 } {N_2} &=& a^{x_1-x_2} \qquad & | \qquad \log() \text{ auf beiden Seiten}\\\\ \log{ \left( \dfrac{ N_1 } {N_2} \right) } &=& \log{ \left(a^{x_1-x_2} \right) } \\\\ \log{ \left( \dfrac{ N_1 } {N_2} \right) } &=& (x_1-x_2) \cdot \log{ (a) } \\\\ \log{a} &=& \dfrac{ \log{ \left( \dfrac{ N_1 } {N_2} \right) } } { x_1-x_2 } \qquad & | \qquad 10^{()} \text{ auf beiden Seiten}\\\\ 10^{\log{a}} &=& 10^{\dfrac{ \log{ \left( \dfrac{ N_1 } {N_2} \right) } } { x_1-x_2 } } \\\\ a &=& 10^{ \left(~ \dfrac{ \log{ \left( \dfrac{ N_1 } {N_2} \right) } } { x_1-x_2 } ~ \right) } \\\\ a &=& 10^{ \left(~ \dfrac{ \log{ \left( \dfrac{ 14929,92 } {12441,60} \right) } } { 3,0-2,5 } ~ \right) } \\\\ a &=& 10^{ \left(~ \dfrac{ \log{ ( 1,2 ) } } { 0,5 } ~ \right) } \\\\ a &=& 10^{ \left(~ \dfrac{ 0,07918124605 } { 0,5 } ~ \right) } \\\\ a &=& 10^{0,15836249210} \\\\ \mathbf{a} &\mathbf{=}& \mathbf{1,44} \\ \hline \end{array}\)

 

2. Berechnung von \(N_0\)

\( \begin{array}{|rcll|} \hline N_1 &=& N_0 \cdot a^{x_1} \\\\ N_0 &=& \dfrac{ N_1 } {a^{x_1}} \\\\ N_0 &=& \dfrac{ 14929,92 } {1,44^{3,0}} \qquad & | \qquad a = 1,44 \\\\ N_0 &=& \dfrac{ 14929,92 } {2,985984} \\\\ \mathbf{N_0} &\mathbf{=}& \mathbf{5000 } \\ \hline \end{array} \)

 

Probe:

\( \begin{array}{|rcll|} \hline N_2 &=& N_0 \cdot a^{x_2} \\\\ N_0 &=& \dfrac{ N_2 } {a^{x_2}} \\\\ N_0 &=& \dfrac{ 12441,60 } {1,44^{2,5}} \qquad & | \qquad a = 1,44 \\\\ N_0 &=& \dfrac{ 12441,60 } {2,48832} \\\\ \mathbf{N_0} &\mathbf{=}& \mathbf{5000 } \\ \hline \end{array}\)

 

laugh

06.06.2016
 #1
avatar+26387 
0
06.06.2016
 #7
avatar+26387 
0

Hallo an alle,

folgendes Aufgabe habe ich zu bewältigen und weiß da einfach nicht mehr weiter...
Jemand zahlt immer 200,00€  am 01. und am 15. des Monats in ein Konto ein.

Für dieses Konto bekommt er im Quartal 1,25% Zinsen.
Die Frage:

Wie hoch ist mein Kapital nach 10 Jahren?

 

1. q aus p berechnen:

\(\begin{array}{rcll} p &=& 1,25\ \% \\ q &=& 1+ p\\ q &=& 1+\frac{1,25}{100}\\ q &=& 1+0.0125\\ \mathbf{q} &\mathbf{=}& \mathbf{1.0125} \end{array}\)

 

Kapital am Ende des I. Quartals(nach 3 Monaten):

\(\begin{array}{|lcll|} \hline \text{Kapital} &=& 1200€ \cdot 1,0125 \\ &=& 1215€ \\ \mathbf{\text{Kapital}_1} &\mathbf{=}& \mathbf{1200€ \cdot q}\\ \hline \end{array}\)

 

Kapital am Ende des II. Quartals(nach 6 Monaten):

\(\begin{array}{|lcll|} \hline \text{Kapital} &=& (1200€ \cdot 1,0125 + 1200€) \cdot 1,0125 \\ &=& 2445,19€ \\ &=& (1200€ \cdot q +1200€)\cdot q \\ &=& 1200€ \cdot q^2 +1200€ \cdot q \\ &=& 1200€ \cdot ( q+q^2 )\\ \mathbf{\text{Kapital}_2} &\mathbf{=}& \mathbf{1200€ \cdot ( q+q^2 )} \\ \hline \end{array}\)

 

Kapital am Ende des III. Quartals(nach 9 Monaten):

\(\begin{array}{|lcll|} \hline \text{Kapital} &=& [~1200€ \cdot ( 1,0125 + 1,0125^2 ) +1200€~] \cdot 1,0125\\ &=& 3690,75,19€ \\ &=&[~1200€ \cdot ( q+q^2 ) +1200€~] \cdot q\\ &=& 1200€ \cdot ( q+q^2 )\cdot q +1200€ \cdot q\\ &=& 1200€ \cdot ( q^2+q^3 ) +1200€ \cdot q\\ &=& 1200€ \cdot ( q+q^2+q^3 )\\ \mathbf{\text{Kapital}_3} &\mathbf{=}& \mathbf{1200€ \cdot ( q+q^2+q^3 )} \\ \hline \end{array}\)

 

Kapital am Ende des IV. Quartals(nach 12 Monaten):

\(\begin{array}{|lcll|} \hline \text{Kapital} &=& [~1200€ \cdot ( 1,0125 + 1,0125^2+ 1,0125^3 ) +1200€~] \cdot 1,0125\\ &=& 4951,87€ \\ &=&[~1200€ \cdot ( q+q^2+q^3 ) +1200€~] \cdot q\\ &=& 1200€ \cdot ( q+q^2+q^3 )\cdot q +1200€ \cdot q\\ &=& 1200€ \cdot ( q^2+q^3+q^4 ) +1200€ \cdot q\\ &=& 1200€ \cdot ( q+q^2+q^3+q^4 )\\ \mathbf{\text{Kapital}_4} &\mathbf{=}& \mathbf{1200€ \cdot ( q+q^2+q^3+q^4 )} \\ \hline \end{array}\)

 

Wir sehen nun eine Gesetzmäßigkeit.
Kapital am Ende des 40. Quartals(nach 120 Monaten bzw. nach 10 Jahren):

\(\begin{array}{lcll} \mathbf{\text{Kapital}_{40}} &\mathbf{=}& \mathbf{1200€ \cdot ( q+q^2+q^3+q^4+\dots +q^{40} )} \qquad \text{mit } q = 1,0125\\ \end{array}\)

 

Sie Summe nach der 1200 ist die Summe einer geometrischen Reihe.
Wir bestimmen jetzt die Summe dieser geometrischen Reihe:

 

\(\begin{array}{|lcrclcl|} \hline S &=& q &+& q^2 + q^3 + q^4 + q^5 + \dots + q^{39} &+& q^{40} \\ q\cdot S &=& & & q^2 + q^3 + q^4 + q^5 +q^6+ \dots &+& q^{40} + q^{41} \\ \hline S-q\cdot S &=&q && && - q^{41}\\ S(1-q) &=&q - q^{41}\\ S &=& \frac{q - q^{41}} {1-q}\\ \mathbf{S} & \mathbf{=} & \mathbf{ \frac{q^{41}-q } {q-1} }\\ \hline \end{array}\)

 

Wir berechnen jetzt das Kapital nach 10 Jahren:

\(\begin{array}{|lcll|} \hline \mathbf{\text{Kapital}_{40}} &\mathbf{=}& \mathbf{1200€ \cdot ( q+q^2+q^3+q^4+\dots +q^{40} )} \\\\ \text{Kapital}_{40} & = & 1200€ \cdot\left(~ \frac{q^{41}-q } {q-1} ~\right) \qquad \text{mit } q = 1,0125\\ & = & 1200€ \cdot \left(~ \frac{ 1,0125^{41}- 1,0125 } { 1,0125-1} ~\right)\\ & = & 1200€ \cdot \left(~ \frac{ 1,0125^{41}- 1,0125 } { 0,0125 } ~\right)\\ & = & 1200€ \cdot \left(~ \frac{ 1,66416470678- 1,0125 } { 0,0125 } ~\right)\\ & = & 1200€ \cdot \left(~ \frac{ 0,65166470678 } { 0,0125 } ~\right)\\ & = & 1200€ \cdot 52,1331765424 \\ \mathbf{\text{Kapital nach 10 Jahren}} & \mathbf{=} & \mathbf{62559,81€} \\ \hline \end{array}\)

 

laugh

03.06.2016