heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #4
avatar+26387 
0

 

\(\begin{array}{|rrcrrll|} \hline 1 &:97 &=& 0. &\text{ remainder }& 1 \\ 1\cdot 10 &:97 &=& 0 &\text{ remainder }& 10 \\ 10\cdot 10 &:97 &=& 1 &\text{ remainder }& 3 \\ 3\cdot 10 &:97 &=& 0 &\text{ remainder }& 30 \\ 30\cdot 10 &:97 &=& 3 &\text{ remainder }& 9 \\ 9\cdot 10 &:97 &=& 0 &\text{ remainder }& 90 \\ 90\cdot 10 &:97 &=& 9 &\text{ remainder }& 27 \\ 27\cdot 10 &:97 &=& 2 &\text{ remainder }& 76 \\ \dots\\ z\cdot 10 &:97 &=& A &\text{ remainder }& y \\ y\cdot 10 &:97 &=& 6 & \text{ remainder }& x \\ x\cdot 10 &:97 &=& 7 & \text{ remainder }& 1 & \qquad \text{ end of repeating part remainder } = 1\\ \hline \end{array} \)

 

We solve A:

We have:

\(\begin{array}{|rcl|} \hline \mathbf{x\cdot 10 }&\mathbf{:97} &\mathbf{=}& \mathbf{7} & \mathbf{\text{ remainder }}& \mathbf{1} \\ \text{ or }\\ x\cdot 10&&=& 7\cdot 97 & +& 1\\\\ x &=& \frac{ 7\cdot 97+1}{10} \\ x &=& \frac{ 680}{10} \\ \mathbf{x} & \mathbf{=}& \mathbf{68}\\ \hline \end{array}\)

 

...and we have:

\(\begin{array}{|rcl|} \hline \mathbf{y\cdot 10 }&\mathbf{:97} &\mathbf{=}& \mathbf{6} & \mathbf{\text{ remainder }}& \mathbf{x} \\ \text{ or }\\ y\cdot 10&&=& 6\cdot 97 & +& 68\\\\ y &=& \frac{ 6\cdot 97+68}{10} \\ y &=& \frac{ 650}{10} \\ \mathbf{y} & \mathbf{=}& \mathbf{65}\\ \hline \end{array}\)

 

...and...

\(\begin{array}{|rcl|} \hline \mathbf{z\cdot 10 }&\mathbf{:97} &\mathbf{=}& \mathbf{A} & \mathbf{\text{ remainder }}& \mathbf{y} \\ \text{ or }\\ z\cdot 10&&=& A\cdot 97 & +& 65\\\\ \hline \end{array}\)

 

We have to solve the Diophantine equation  \(10z -97A = 65.\)

We can do it with a variation of the Euclidean algorithm, or we can do it with Euler's Method etc.


I will do it with Euler's theorem:

\(\begin{array}{l} \text{In number theory, }\\ \text{Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem)}\\ \text{states that if } \mathbf{m} \text{ and } \mathbf{a} \text{ are coprime positive integers, then }\\ \hline a^{\varphi (m)} \equiv 1 \pmod{m} \qquad \text{, if }~ gcd(a,m)=1 \\\\ \text{or} \\ \\ a^{\varphi (m)} \pmod{m} \equiv 1 \qquad | \qquad \cdot \frac{1}{a}\\ \frac{ a^{\varphi (m)} } {a} \pmod{m} \equiv \frac{1}{a} = a^{-1}\\ a^{\varphi (m)-1} \pmod{m} \equiv \frac{1}{a} = a^{-1}\\ \begin{array}{|rcl|} \hline a^{-1} = \frac{1}{a} \equiv a^{\varphi (m)-1} \pmod{m} \qquad \text{, if }~ gcd(a,m)=1\\ \hline \end{array} \end{array} \)

 

We need this Formula: \( \begin{array}{|rcl|} \hline a^{-1} = \frac{1}{a} \equiv a^{\varphi (m)-1} \pmod{m} \qquad \text{, if }~ gcd(a,m)=1\\ \hline \end{array}\)

 

an we need the Euler's Totient Function: \(\varphi(10) = 10\cdot (1- \frac{1}{2} )\cdot (1- \frac{1}{5} ) = 4, \text{ because } ~ 10 = 2\cdot 5\)

 

so we have:

\(\begin{array}{rcl} 10z -97A &=& 65\\\\ 97A &=& 10\cdot z - 65 \qquad | \qquad \pmod{10} \\ 97A &\equiv& -65 \pmod{10} \\ 97A &\equiv& -65 +7\cdot 10 \pmod{10} \\ \mathbf{97A} & \mathbf{\equiv}& \mathbf{5 \pmod{10}}\\\\ 97\cdot A\cdot \frac{1}{97} & \equiv & \frac{5}{97} \pmod{10}\\ A & \equiv & 5\cdot \frac{1}{97} \pmod{10}\\\\ \frac{1}{97} \pmod{10} &\equiv& 97^{\varphi(10)-1} \pmod{10} \qquad \text{ see Formula above,}\\ &&\qquad \text{we can do it because, } ~gcd(97,10)=1\\ &\equiv& 97^{4-1} \pmod{10}\\ &\equiv& 97^3 \pmod{10}\\ &\equiv& 912673 \pmod{10}\\ &\equiv& 3 \pmod{10}\\\\ A & \equiv & 5\cdot \frac{1}{97} \pmod{10}\\\\ A & \equiv & 5\cdot 3 \pmod{10}\\ A & \equiv & 15 \pmod{10}\\ A & \equiv & 5 \pmod{10}\\ \mathbf{A} & \mathbf{=} & \mathbf{5} \end{array}\)

 


laugh

01.06.2016
 #1
avatar+26387 
+5

Larry has 4-cent stamps and 9-cent stamps, which he can combine to produce various amounts of postage. For example, he can make 40 cents by using four 9-cent stamps and a 4-cent stamp, or by using ten 4-cent stamps. However, there are some amounts of postage he can't make exactly, such as 10 cents. {nl} {nl} What is the largest number of cents that Larry cannot make exactly from a combination of 4- and/or 9-cent stamps? {nl} {nl} Explain how you know your answer is correct. (You should explain two things: why Larry can't make the amount of your answer, and why he can make any bigger amount.)

 

All figures can be divided into 4 groups.

Group 1: 4n

Group 2: 4n+1

Group 3: 4n+2

Group 4: 4n+3

 

With 4-cent stamps we get Group 1. (Beginning with n=1 we have 4, 8, 12, 16, 32, ...)

 

With one 9-cent(4*2+1) we can start Group 2. (Beginning with n=2 we have 9 ) and continuing 4*3 + 1(=13) with one 4-cent, 4*4 + 1(=17) with two 4-cent, 4*5+1(=21) with three 4-cent etc.

 

With two 9-cent(4*4+2) we can start Group 3. (Beginning with n=4 we have 18 ) and continuing 4*5 + 2(=22) with one 4-cent, 4*6 + 2(=26) with two 4-cent, 4*7+2 (=30) with three 4-cent etc.

 

With three 9-cent(4*6+3) we can start Group 4. (Beginning with n=6 we have 27 ) and continuing 4*7 + 3(=31) with one 4-cent, 4*8 + 3(=35) with two 4-cent, 4*9+3 (=39) with three 4-cent etc.

 

\(\begin{array}{|r|r|r|r|r|} \hline \text{All Numbers} \\ \hline \text{Group 1} &\text{Group 2} &\text{Group 3} &\text{Group 4} \\ 4n+1 & 4n+2 & 4n+3 & 4n \\ \hline 1 & 2 & 3 & 4\checkmark \\ & & & & +4 \\ 5 & 6 & 7 & 8\checkmark \\ & & & & +4 \\ 9\checkmark & 10 & 11 & 12\checkmark \\ & & & & +4 \\ 13\checkmark & 14 & 15 & 16\checkmark \\ & & & & +4 \\ 17\checkmark & 18\checkmark & 19 & 20\checkmark \\ & & & & +4 \\ 21\checkmark & 22\checkmark & {\color{red}23} & 24\checkmark \\ & & & & +4 \\ 25\checkmark & 26\checkmark & 27\checkmark & 28\checkmark \\ & & & & +4 \\ 29\checkmark & 30\checkmark & 31\checkmark & 32\checkmark \\ & & & & +4 \\ 33\checkmark & 34\checkmark & 35\checkmark & 36\checkmark \\ & & & & +4 \\ 37\checkmark & 38\checkmark & 29\checkmark & 40\checkmark \\ & & & & +4 \\ \dots\checkmark & \dots\checkmark & \dots\checkmark & \dots\checkmark \\ \hline \end{array}\)

 

the largest number of cents that Larry cannot make exactly from a combination of 4- and/or 9-cent stamps is 23.

 

laugh

27.05.2016