
1:97=0. remainder 11⋅10:97=0 remainder 1010⋅10:97=1 remainder 33⋅10:97=0 remainder 3030⋅10:97=3 remainder 99⋅10:97=0 remainder 9090⋅10:97=9 remainder 2727⋅10:97=2 remainder 76…z⋅10:97=A remainder yy⋅10:97=6 remainder xx⋅10:97=7 remainder 1 end of repeating part remainder =1
We solve A:
We have:
x⋅10:97=7 remainder 1 or x⋅10=7⋅97+1x=7⋅97+110x=68010x=68
...and we have:
y⋅10:97=6 remainder x or y⋅10=6⋅97+68y=6⋅97+6810y=65010y=65
...and...
z⋅10:97=A remainder y or z⋅10=A⋅97+65
We have to solve the Diophantine equation 10z−97A=65.
We can do it with a variation of the Euclidean algorithm, or we can do it with Euler's Method etc.
I will do it with Euler's theorem:
In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem)states that if m and a are coprime positive integers, then aφ(m)≡1(modm), if gcd(a,m)=1oraφ(m)(modm)≡1|⋅1aaφ(m)a(modm)≡1a=a−1aφ(m)−1(modm)≡1a=a−1a−1=1a≡aφ(m)−1(modm), if gcd(a,m)=1
We need this Formula: a−1=1a≡aφ(m)−1(modm), if gcd(a,m)=1
an we need the Euler's Totient Function: φ(10)=10⋅(1−12)⋅(1−15)=4, because 10=2⋅5
so we have:
10z−97A=6597A=10⋅z−65|(mod10)97A≡−65(mod10)97A≡−65+7⋅10(mod10)97A≡5(mod10)97⋅A⋅197≡597(mod10)A≡5⋅197(mod10)197(mod10)≡97φ(10)−1(mod10) see Formula above,we can do it because, gcd(97,10)=1≡974−1(mod10)≡973(mod10)≡912673(mod10)≡3(mod10)A≡5⋅197(mod10)A≡5⋅3(mod10)A≡15(mod10)A≡5(mod10)A=5
