heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+5

 

 

1. Days between A and B

\(\begin{array}{|rcll|} \hline d &=& 2\cdot 365,25\ \text{days} - 687\ \text{days} \\ d &=& 43.5\ \text{days} \\ \hline \end{array}\)

 

2. Angle \(\alpha\) = ACB:

\( \begin{array}{|rcll|} \hline \alpha &=& \frac{ 43.5\ \text{days} } {365.25\ \text{days} } \cdot 360^{\circ}\\ \alpha &=& 42.8747433265^{\circ}\\ \hline \end{array}\)

 

3. Angle \(\beta \) = ABC = BAC ( isosceles triangle )

\( \begin{array}{|rcll|} \hline 2\cdot \beta + \alpha &=& 180^{\circ} \\ 2\cdot \beta &=& 180^{\circ} - \alpha \\ \beta &=& 90^{\circ} - \frac{ \alpha } {2} \\ && \beta = 68.5626283368^{\circ}\\ \hline \end{array} \)

 

4. \(b = \overline{BA}:\)

\( \begin{array}{|rcll|} \hline \frac{ \sin(\alpha) } {b} &=& \frac{ \sin(\beta) } {1\ \text{AU}} \\ b &=& \frac{ \sin(\alpha) } { \sin(\beta) } \cdot 1\ \text{AU} \qquad & | \qquad \beta = 90^{\circ} - \frac{ \alpha } {2} \\ b &=& \frac{ \sin(\alpha) } { \sin(90^{\circ} - \frac{ \alpha } {2}) } \cdot 1\ \text{AU} \\ b &=& \frac{ \sin(\alpha) } { \cos(\frac{ \alpha } {2}) } \cdot 1\ \text{AU} \\ b &=& \frac{ \sin(\alpha) } { \cos(\frac{ \alpha } {2}) } \qquad & | \qquad b \text{ in AU}\\ && b = 0.70212731514\ \text{AU}\\ \hline \end{array}\)

 

5. Angle \(\delta\) = BDA:
 \( \begin{array}{|rcll|} \hline \delta + (\beta -17.1^{\circ}) + (\beta+42.8^{\circ}) &=& 180^{\circ} \\ \delta + 2\cdot \beta -17.1^{\circ} + 42.8^{\circ} &=& 180^{\circ} \\ \delta + 2\cdot \beta + 25.7^{\circ} &=& 180^{\circ} \\ \delta + 2\cdot \beta &=& 180^{\circ} - 25.7^{\circ}\\ \delta &=& 180^{\circ} - 25.7^{\circ} - 2\cdot \beta \qquad & | \qquad \beta = 90^{\circ} - \frac{ \alpha } {2} \\ \delta &=& 180^{\circ} - 25.7^{\circ} - 2\cdot ( 90^{\circ} - \frac{ \alpha } {2} ) \\ \delta &=& 180^{\circ} - 25.7^{\circ} - 180^{\circ} + \alpha \\ \delta &=& \alpha - 25.7^{\circ} \\ && \delta = 17.1747433265^{\circ} \\ \hline \end{array} \)

 

6. \( a = \overline{AD}:\)

\(\begin{array}{|rcll|} \hline \frac{ \sin(\delta) } {b} &=& \frac{ \sin(\beta+42.8^{\circ} ) } {a} \\ a &=& \frac{ \sin(\beta+42.8^{\circ} ) } { \sin(\delta) } \cdot b \qquad & | \qquad \beta = 90^{\circ} - \frac{ \alpha } {2} \qquad \delta = \alpha - 25.7^{\circ} \\ a &=& \frac{ \sin(90^{\circ} - \frac{ \alpha } {2}+42.8^{\circ} ) } { \sin(\alpha - 25.7^{\circ}) } \cdot b \\ a &=& \frac{ \sin(90^{\circ} - [~\frac{ \alpha } {2}-42.8^{\circ} ~]) } { \sin(\alpha - 25.7^{\circ}) } \cdot b \\ a &=& \frac{ \cos(\frac{ \alpha } {2}-42.8^{\circ} ) } { \sin(\alpha - 25.7^{\circ}) } \cdot b \qquad & | \qquad b = \frac{ \sin(\alpha) } { \cos(\frac{ \alpha } {2}) }\\ a &=& \frac{ \cos(\frac{ \alpha } {2}-42.8^{\circ} ) } { \sin(\alpha - 25.7^{\circ}) } \cdot \frac{ \sin(\alpha) } { \cos(\frac{ \alpha } {2}) }\\ && a = 2.30537070178\ \text{AU}\\ \hline \end{array} \)

 

7. \(x = \overline{CD}\)

\(\begin{array}{|rcll|} \hline x^2 &=& 1^2 + a^2 - 2\cdot 1 \cdot a \cdot \cos(17.1^{\circ}) \qquad & | \qquad x \text{ in AU}\\ x^2 &=& 1 + a^2 - 2 \cdot a \cdot \cos(17.1^{\circ}) \qquad & | \qquad a = 2.30537070178\ \text{AU}\\ x^2 &=& 1 + 2.30537070178^2 - 2 \cdot 2.30537070178 \cdot \cos(17.1^{\circ}) \\ x^2 &=& 1.90781964606\\ x &=& 1.38123844649\ \text{AU} \\ && x = 1.38123844649\ \text{AU} \cdot 93000000 \frac{ \text{miles} } {\text{AU}} \\ && x = 128455175.524\ \text{miles} \\ \hline \end{array} \)

 

The distance of mars from the sun is 1.38123844649 AU or 128,455,175.524 miles

 

laugh

10.06.2016
 #2
avatar+26387 
+5

Neil Armstrong is on the moon (acceleration due to gravity is 1.6 m/s2) and throws a golf ball straight up with an upward with a speed of 10 m/s. How high does the golf ball go?

 

\(\begin{array}{|rcl|} \hline v_{\text{up}} &=& v_0 \\ v_{\text{down}} &=& g_{\text{moon}}\cdot t \\ \hline v &=& v_{\text{up}} - v_{\text{down}}\\ v &=& v_0 - g_{\text{moon}}\cdot t\\ \text{high max, if } v = 0 \\ 0 &=& v_0 - g_{\text{moon}}\cdot t\\ g_{\text{moon}}\cdot t &=& v_0 \\ \color{red}\mathbf{t} & \color{red}\mathbf{=} & \color{red}\mathbf{\frac{v_0}{g_{\text{moon}}} } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline h_{\text{up}} &=& v_0\cdot t \\ h_{\text{down}} &=& \frac{g_{\text{moon}}} {2} \cdot t^2 \\ \hline h &=& h_{\text{up}} - h_{\text{down}}\\ h &=& v_0\cdot t - \frac{g_{\text{moon}}} {2} \cdot t^2 \qquad &| \qquad \color{red}\mathbf{t} & \color{red}\mathbf{=} & \color{red}\mathbf{\frac{v_0}{g_{\text{moon}}} }\\ h_{\text{max}} &=& v_0\cdot \left( \frac{v_0}{g_{\text{moon}}} \right) - \frac{g_{\text{moon}}} {2} \cdot \left(\frac{v_0}{g_{\text{moon}}} \right)^2 \\ h_{\text{max}} &=& \frac{v_0^2}{g_{\text{moon}}} - \frac{v_0^2}{2\cdot g_{\text{moon}}} \\ \color{red}\mathbf{h_{\text{max}} } &\color{red}\mathbf{=}& \color{red}\mathbf{ \frac{v_0^2}{2\cdot g_{\text{moon}}} }\\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline h_{\text{max}} & = & \frac{v_0^2}{2\cdot g_{\text{moon}}} \qquad & | \qquad v_0 = 10\ \frac{m}{s} \qquad g_{\text{moon}} = 1.6\frac{m}{s^2} \\ h_{\text{max}} & = & \frac{ (10\ \frac{m}{s})^2}{2\cdot 1.6\frac{m}{s^2} } \\ h_{\text{max}} & = & \frac{10^2}{2\cdot 1.6} \cdot \frac{m^2}{s^2}\cdot \frac{s^2}{m}\\ h_{\text{max}} & = & \frac{100}{2\cdot 1.6} \ m\\ \mathbf{h_{\text{max}} }& \mathbf{=} & \mathbf{31.25 \ m }\\ \hline \end{array}\)

 

The golf ball does go high 31.25 m.

 

laugh

08.06.2016