
1. Days between A and B
d=2⋅365,25 days−687 daysd=43.5 days
2. Angle α = ACB:
α=43.5 days365.25 days⋅360∘α=42.8747433265∘
3. Angle β = ABC = BAC ( isosceles triangle )
2⋅β+α=180∘2⋅β=180∘−αβ=90∘−α2β=68.5626283368∘
4. b=¯BA:
sin(α)b=sin(β)1 AUb=sin(α)sin(β)⋅1 AU|β=90∘−α2b=sin(α)sin(90∘−α2)⋅1 AUb=sin(α)cos(α2)⋅1 AUb=sin(α)cos(α2)|b in AUb=0.70212731514 AU
5. Angle δ = BDA:
δ+(β−17.1∘)+(β+42.8∘)=180∘δ+2⋅β−17.1∘+42.8∘=180∘δ+2⋅β+25.7∘=180∘δ+2⋅β=180∘−25.7∘δ=180∘−25.7∘−2⋅β|β=90∘−α2δ=180∘−25.7∘−2⋅(90∘−α2)δ=180∘−25.7∘−180∘+αδ=α−25.7∘δ=17.1747433265∘
6. a=¯AD:
sin(δ)b=sin(β+42.8∘)aa=sin(β+42.8∘)sin(δ)⋅b|β=90∘−α2δ=α−25.7∘a=sin(90∘−α2+42.8∘)sin(α−25.7∘)⋅ba=sin(90∘−[ α2−42.8∘ ])sin(α−25.7∘)⋅ba=cos(α2−42.8∘)sin(α−25.7∘)⋅b|b=sin(α)cos(α2)a=cos(α2−42.8∘)sin(α−25.7∘)⋅sin(α)cos(α2)a=2.30537070178 AU
7. x=¯CD
x2=12+a2−2⋅1⋅a⋅cos(17.1∘)|x in AUx2=1+a2−2⋅a⋅cos(17.1∘)|a=2.30537070178 AUx2=1+2.305370701782−2⋅2.30537070178⋅cos(17.1∘)x2=1.90781964606x=1.38123844649 AUx=1.38123844649 AU⋅93000000milesAUx=128455175.524 miles
The distance of mars from the sun is 1.38123844649 AU or 128,455,175.524 miles
