Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+2

In the sequence 
1,2,2,4,8,32,256,... 
each term (starting from the third term) is the product of the two terms before it. For example, the seventh term is 256, which is the product of the fifth term (8) and the sixth term (32). 

This sequence can be continued forever, though the numbers very quickly grow enormous! (For example, the 14th term is close to some estimates of the number of particles in the observable universe.) 

What is the last digit of the 35th term of the sequence?

 

a1=1a2=2a3=2a4=4a5=8a6=32=212+13=215+03=25f1+3f0a7=256=212+23=215+13=25f2+3f1a8=8192=222+33=225+13=25f3+3f2a9==232+53=235+23=25f4+3f3a10==252+83=255+33=25f5+3f4a11==282+133=285+53=25f6+3f5a12==2132+213=2135+83=25f7+3f6a13==2212+343=2215+133=25f8+3f7a14==2342+553=2345+213=25f9+3f8a15==2552+893=2555+343=25f10+3f9a16===2895+553=25f11+3f10a35====25f30+3f29

 

 

Fibonacci numbers: fn=fn1+fn2 with f0=0 and f1=1.

f0=0,f1=1,f2=1,f3=2,f4=3,f5=5,f6=8,f7=13,f8=21,f9=34,f10=55,f11=89,f12=144,f13=233,f14=377,f15=610,f16=987,f17=1597,f18=2584,f19=4181,f20=6765,f21=10946,f22=17711,f23=28657,f24=46368,f25=75025,f26=121393,f27=196418,f28=317811,f29=514229,f30=832040,f31=1346269,f32=2178309,f33=3524578,f34=5702887,f35=9227465,f36=14930352,f37=24157817,f38=39088169,

 

a35=25f30+3f29|f30=832040f29=514229a35=25832040+3514229a35=25702887

 

What is the last digit of the 35th term of the sequence ?

25702887(mod10)= ?

 

 23321(mod10)23333(233)33(21)3321(mod10)2(33n)21(mod10)2a(33n)2a(mod10) 

 

5702887334=57028871185921=4 remainder 959203959203333=570288735937=26 remainder 2484124841332=57028871089=22 remainder 88388333=26 remainder 255702887=4334+26333+22332+2633+2525702887(mod10)=24334+26333+22332+2633+25(mod10)=241+261+221+261+25(mod10)=24+26+22+26+25(mod10)=2103(mod10)=2333+4(mod10)=213+4(mod10)=23+4(mod10)=27(mod10)=128(mod10)=8(mod10)


the last digit of the 35th term of the sequence is 8

 

laugh

27.05.2016
 #2
avatar+26396 
+5
27.05.2016
 #1
avatar+26396 
0

Das Sparschwein wurde geleert !

Auf dem Tisch liegen  1-€- Münzen.   5 Personen dürfen sich nacheinander nach folgender Regel bedienen :

Nimm die Hälfte der Münzen und noch  2 Münzen dazu.

Die letzten 2 Münzen kommen zurück in das Sparschwein.

Wie viele Münzen bekommen die einzelnen Personen ?

 

x = 1 € Münzen am Anfang im Sparschwein

P = Person

R = Rest

 

PersonRestP1=x2+2R1=xP1=x(x2+2)R1=x22P2=R12+2R2=R1P2=R1(R12+2)R2=R122=x2222=x43P3=R22+2R3=R2P3=R2(R22+2)R3=R222=x4322=x8322=x872P4=R32+2R4=R3P4=R3(R32+2)R4=R322=x87222=x16782=x16154P5=R42+2R5=R4P5=R4(R42+2)R5=R422=x1615422=x321582R5=2x321582=2x32158=4|32x415=432x=60+128x=188

 

PersonRestP1=1882+2=9692P2=922+2=4844P3=442+2=2420P4=202+2=128P5=82+2=62

 


laugh

26.05.2016
 #2
avatar+26396 
+10

10^x=x^10.Then find the value of x

 

1. x>0

10x=x10|ln()ln(10x)=ln(x10) xln(10)=10ln(x) xln(10)10=ln(x)|e()exln(10)10=eln(x)exln(10)10=x1exln(10)10=1xexln(10)10=1x|(1)exln(10)10=1x|xxexln(10)10=1|ln(10)10 xln(10)10exln(10)10=ln(10)10 z=xln(10)10zez=ln(10)10z=W(ln(10)10)xln(10)10=W(ln(10)10)x=10ln(10)W(ln(10)10)

x=10ln(10)W(ln(10)10)x=4.34294481903W(0.23025850930)x=4.34294481903(0.31575086292349132953423736459398378904700244670451503991)x=1.371288574238623536861362106299689958842854404842257070408

 

 

2. x<0

x=ˉx10ˉx=(ˉx)1010ˉx=ˉx10|ln()ln(10ˉx)=ln(ˉx)10 ˉxln(10)=10ln(ˉx) ˉxln(10)10=ln(ˉx))|e()eˉxln(10)10=eln(ˉx))eˉxln(10)10=ˉx1eˉxln(10)10=ˉxˉxeˉxln(10)10=1|ln(10)10 ˉxln(10)10eˉxln(10)10=ln(10)10 z=ˉxln(10)10zez=ln(10)10z=W(ln(10)10)ˉxln(10)10=W(ln(10)10)ˉx=10ln(10)W(ln(10)10)x=ˉxx=10ln(10)W(ln(10)10)

 

x=10ln(10)W(ln(10)10)x=4.34294481903W(0.23025850930)x=4.34294481903(0.190348104808510145602603466195537000486106560139470579285)x=0.826671315590777916259325344655692315108945325325260676448

 

Lambert W Function Calculator see: http://www.had2know.com/academics/lambert-w-function-calculator.html

 

 

laugh

26.05.2016
 #3
avatar+26396 
+5

Hallo Melody,

the diagram is in Latex.

My new version:

 

The Latex package is:

\usepackage{tikz}

\usetikzlibrary{  calc,   positioning,   automata, ... }

 

The source code is:

\begin{tikzpicture} % Hilfslinie \coordinate[ ] (D) at (6.14300380421,0); %Punkte \coordinate[label=left:$P$] (P) at (0,0); \draw [dashed,color=red,line width=0.5pt] (P)--(D); \coordinate[label=right:$Q$] (Q) at (31:6); \coordinate[label=right:$R$] (R) at (5.14300380421,4.47074499954); \draw [dashed,color=red,line width=0.5pt] (3.14300380421,4.47074499954)--(R); % Winkel
\begin{scope}[shift={(P)}] \draw (0,0) -- (0:2.00cm) arc (0:31:2.00cm); \draw (15.5:2.35cm) node {$31^{\circ}$}; \draw[fill=green] (0,0) -- (0:1.25cm) arc (0:41:1.25cm); \draw (20.5:1.55cm) node {$41^{\circ}$}; \end{scope}

\begin{scope}[shift={(R)}] \draw[fill=green] (0,0) -- (-180:1.25cm) arc (-180:-139:1.25cm); \draw (-160:1.55cm) node {$41^{\circ}$}; \end{scope}
\draw [color=blue!50,line width=1.5pt] (P)--(Q)--(R)--cycle; \coordinate[label=right:$h$] (h) at ($(R)!.5!(Q)$); \draw ($(P)!.7!(Q)$) node [below,rotate=31]{$600\ m$}; \draw [fill=blue!50] (0,0) circle [radius=1.5pt]; \draw [fill=blue!50] (31:6) circle [radius=1.5pt]; \draw [fill=blue!50] (R) circle [radius=1.5pt]; \end{tikzpicture}

 

laugh

26.05.2016
 #2
avatar+26396 
+5

Hallo Melody,

the diagram is in Latex.

My new version:

 

The Latex package is:

\usepackage{tikz}

\usetikzlibrary{  calc,   positioning,   automata, ... }

 

The source code is:

\begin{tikzpicture}
% Hilfslinie
\coordinate[ ] (D) at (6.14300380421,0);

%Punkte
\coordinate[label=left:$P$]  (P) at (0,0);
\draw [dashed,color=red,line width=0.5pt] (P)--(D);

\coordinate[label=right:$Q$] (Q) at (31:6);
\coordinate[label=right:$R$] (R) at (5.14300380421,4.47074499954);
\draw [dashed,color=red,line width=0.5pt] (3.14300380421,4.47074499954)--(R);

% Winkel
\begin{scope}[shift={(P)}]     \draw (0,0) -- (0:2.00cm) arc (0:31:2.00cm);     \draw (15.5:2.35cm) node {$31^{\circ}$};     \draw[fill=green] (0,0) -- (0:1.25cm) arc (0:41:1.25cm);     \draw (20.5:1.55cm) node {$41^{\circ}$};  \end{scope}

\begin{scope}[shift={(R)}]     \draw[fill=green] (0,0) -- (-180:1.25cm) arc (-180:-139:1.25cm);     \draw (-160:1.55cm) node {$41^{\circ}$};  \end{scope}

\draw [color=blue!50,line width=1.5pt] (P)--(Q)--(R)--cycle;

   \coordinate[label=right:$h$] (h) at ($(R)!.5!(Q)$);
   \draw ($(P)!.7!(Q)$) node [below,rotate=31]{$600\ m$};

\draw [fill=blue!50] (0,0) circle [radius=1.5pt];
\draw [fill=blue!50] (31:6) circle [radius=1.5pt];
\draw [fill=blue!50] (R) circle [radius=1.5pt];

\end{tikzpicture}

 

laugh

26.05.2016
 #2
avatar+26396 
+5

1/(x(x-1)) + 1/(x(x+1))+1/((x+1)(x+2))+  1/((2+x)(3+x))+ 1/((3+x)(4+x))+ 1/((4+x)(5+x))+ 1/((5+x)(6+x))+ 1/((6+x)(7+x))+ 1/((7+x)(8+x))+ 1/((8+x)(9+x))+ 1/((9+x)(10+x))=11/12

 

1(9+x)(10+x)+1(8+x)(9+x)}=19+x(18+x+110+x)=2(8+x)(10+x)+1(7+x)(8+x)+1(6+x)(7+x)}=17+x(16+x+18+x)=2(6+x)(8+x)+1(5+x)(6+x)+1(4+x)(5+x)}=15+x(14+x+16+x)=2(4+x)(6+x)+1(3+x)(4+x)+1(2+x)(3+x)}=13+x(12+x+14+x)=2(2+x)(4+x)+1(1+x)(2+x)+1(0+x)(1+x)}=11+x(10+x+12+x)=2x(2+x)+1x(x1)=1112

 

2(8+x)(10+x)+2(6+x)(8+x)}=28+x(16+x+110+x)=4(6+x)(10+x)+2(4+x)(6+x)+2(2+x)(4+x)}=24+x(12+x+16+x)=4(2+x)(6+x)+2x(2+x)+1x(x1)}=1x(22+x+1x1)=3(2+x)(x1)=1112

 

4(6+x)(10+x)+4(2+x)(6+x)}=46+x(12+x+110+x)=8(2+x)(10+x)+3(2+x)(x1)=1112

 

3(2+x)(x1)+8(2+x)(10+x)=111212+x(3x1+810+x)=111212+x(11x+22(x1)(10+x))=11121(2+x)(11x+22)(x1)(10+x)=1112|:111(2+x)11x+2211(x1)(10+x)=1121(2+x)(x+2)(x1)(10+x)=1121(x1)(10+x)=112(x1)(10+x)=1210x+x210x=12x2+9x22=0x1,2=9±814(22)2x1,2=9±81+882x1,2=9±1962x1,2=9±132x1=9+132x1=2x2=9132x1=11

 

laugh

25.05.2016