Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js
 
+0  
 
0
890
4
avatar+33 

 circle is centered at (-5,3) and has radius of 5. A particle starts at point (-5,8) and travels clockwise on the circle, making one complete revolution every 13 seconds.

Write the parametric equations for the motion of the particle, where tt represents time in seconds:

 

x(t)=

y(t)=

 Jun 7, 2016

Best Answer 

 #3
avatar+130466 
0

x(t)   = -5 + 5 sin (2 pi * t / 13)

 

y(t)  = 3 + 5cos (2pi * t / 13)

 

 

 

 

 

 

cool cool cool

 Jun 7, 2016
 #4
avatar+26396 
+5

circle is centered at (-5,3) and has radius of 5. A particle starts at point (-5,8) and travels clockwise on the circle, making one complete revolution every 13 seconds. {nl} Write the parametric equations for the motion of the particle, where tt represents time in seconds:

x(t)=

y(t)=

 

(x(t)y(t))=(53)+5(cos(ωt+90)sin(ωt+90))(x(t)y(t))=(53)+5(cos(90ωt)sin(90ωt))|cos(90φ)=sin(φ)sin(90φ)=cos(φ)(x(t)y(t))=(53)+5(sin(ωt)cos(ωt))|ω=2π13 sx(t)=5+5sin(2π13 st)y(t)=3+5cos(2π13 st)

 

Proof:

if t=0x(t)=5y(t)=8

 

 

laugh

 Jun 7, 2016
edited by heureka  Jun 7, 2016

1 Online Users