heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26387 
+10

how high is rhombus if diagonals are 36 cm and 12cm

 

e = one diagonal

f = the other diagonal

\(e = 12\ cm\) and \(f = 36\ cm\)

 

The four sides all have the same length \( a\)

\(h\) ist the height of the rhombus

 

cos-rule

\(\begin{array}{rcll} e^2 &=& 2a^2 - 2a^2\cdot \cos{(A)} \\ f^2 &=& 2a^2 - 2a^2\cdot \cos{(B)} \\\\ 2A+2B &=& 360^\circ \\ A+B &=& 180^\circ \\ B &=& 180^\circ - A \\ \cos{(B)} &=& \cos{(180^\circ - A)} = -\cos{(A)} \\\\ e^2 &=& 2a^2 - 2a^2\cdot \cos{(A)} \\ f^2 &=& 2a^2 + 2a^2\cdot \cos{(A)} \\\\ \cos{(A)} = \frac{2a^2-e^2}{2a^2} &=& \frac{f^2-2a^2}{2a^2}\\ 2a^2-e^2 &=& f^2-2a^2 \\ 4a^2 &=& e^2 + f^2\\ 2a &=& \sqrt{ e^2 + f^2 } \\ \mathbf{a} &\mathbf{=}& \mathbf{\frac{ \sqrt{ e^2 + f^2 } } {2} }\\ \end{array}\)

 

\(\begin{array}{rcll} \cos{(A)} &=& \frac{2a^2-e^2}{2a^2} \\ \cos^2{(A)} &=& \frac{(2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& 1-\frac{(2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^4 - (2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^4 - 4a^2 + 4a^2e^2-e^4 }{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^2e^2-e^4 }{4a^4} \\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot (4a^2-e^2) }{4a^4} \qquad | \qquad 4a^2 = e^2 + f^2\\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot ( e^2 + f^2-e^2) }{4a^4} \\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot f^2 }{4a^4} \qquad | \qquad \sin^2{(A)}=1-\cos^2{(A)}\\ \sin^2{(A)} &=&\frac{ e^2\cdot f^2 }{4a^4} \\ \mathbf{\sin{(A)}} &\mathbf{=}&\mathbf{\frac{ e\cdot f }{2a^2} } \\ \end{array}\)

 

\(\begin{array}{rcll} h &=& a\cdot \sin{(A)} \\ h &=& a\cdot \frac{ e\cdot f }{2a^2} \\ h &=&\frac{ e\cdot f }{2a} \qquad & | \qquad 2a = \sqrt{ e^2 + f^2 }\\ \end{array} \\ \boxed{~ \begin{array}{rcll} h &=&\frac{ e\cdot f }{\sqrt{ e^2 + f^2 }} \\ \end{array} ~}\\\)

 

\(\begin{array}{rcll} h &=&\frac{ 12\cdot 36 }{\sqrt{ 12^2 + 36^2 }} \\ h &=&\frac{ 432 }{\sqrt{ 1440 }} \\ h &=&\frac{ 432 }{37.9473319220} \\\\ \mathbf{h} &\mathbf{=}& \mathbf{11.3841995766\ cm }\\ \end{array}\)

 

laugh

25.01.2016
 #7
avatar+26387 
+5

1, 6, 20, 51, 189, 517, 2197, 4823, 14496, what comes next?

 

\(\small{ \begin{array}{lrrrrrrrrrr} & {\color{red}d_0 = 1} && 6 && 20 && 51 && 189 && \cdots \\ \text{1. Difference } && {\color{red}d_1 = 5} && 14 && 31 && 138 && 328 && \cdots \\ \text{2. Difference } &&& {\color{red}d_2 = 9} && 17 && 107 && 190 && 1352 && \cdots \\ \text{3. Difference } {\color{red}d_3 = 8} \\ \text{4. Difference } {\color{red}d_4 = 82} \\ \text{5. Difference } {\color{red}d_5 = -89} \\ \text{6. Difference } {\color{red}d_6 = 1175} \\ \text{7. Difference } {\color{red}d_7 = -4908} \\ \text{8. Difference } {\color{red}d_8 = 19363} \\ \end{array} }\)

 

\(\small{ \begin{array}{rcl} a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } + \binom{n-1}{2}\cdot {\color{red}d_2 } \\ &+& \binom{n-1}{3}\cdot {\color{red}d_3 } + \binom{n-1}{4}\cdot {\color{red}d_4 } + \binom{n-1}{5}\cdot {\color{red}d_5 }\\ &+& \binom{n-1}{6}\cdot {\color{red}d_6 } + \binom{n-1}{7}\cdot {\color{red}d_7 } + \binom{n-1}{8}\cdot {\color{red}d_8 }\\\\ a_n &=& \binom{n-1}{0}\cdot {\color{red} 1 } + \binom{n-1}{1}\cdot {\color{red} 5 } + \binom{n-1}{2}\cdot {\color{red} 9 } \\ &+& \binom{n-1}{3}\cdot {\color{red} 8 } + \binom{n-1}{4}\cdot {\color{red} 82 } + \binom{n-1}{5}\cdot {\color{red} (-89) } \\ &+& \binom{n-1}{6}\cdot {\color{red} 1175 } + \binom{n-1}{7}\cdot {\color{red} (-4908) } + \binom{n-1}{8}\cdot {\color{red} 19363 } \\\\ a_{10} &=& \binom{9}{0}\cdot {\color{red} 1 } + \binom{9}{1}\cdot {\color{red} 5 } + \binom{9}{2}\cdot {\color{red} 9 } \\ &+& \binom{9}{3}\cdot {\color{red} 8 } + \binom{9}{4}\cdot {\color{red} 82 } + \binom{9}{5}\cdot {\color{red} (-89) } \\ &+& \binom{9}{6}\cdot {\color{red} 1175 } + \binom{9}{7}\cdot {\color{red} (-4908) } + \binom{9}{8}\cdot {\color{red} 19363 } \\ a_{10} &=& 1\cdot {\color{red} 1 } + 9\cdot {\color{red} 5 } + 36\cdot {\color{red} 9 } \\ &+& 84\cdot {\color{red} 8 } + 126\cdot {\color{red} 82 } + 126\cdot {\color{red} (-89) } \\ &+& 84\cdot {\color{red} 1175 } + 36\cdot {\color{red} (-4908) } + 9\cdot {\color{red} 19363 } \\ a_{10} &=& 1 + 45 + 324 +672 + 10332 -11214 +98700 - 176688+174267 \\ \mathbf{a_{10}} & \mathbf{=}& \mathbf{96439} \end{array} }\)

 


laugh

22.01.2016
 #1
avatar+26387 
+10

I cant find the angle between the vertices c (1,1,1) a (1,-4,2) b (-5,2,7) Can you help me?

 

I set:

\(\small{ \begin{array}{lcr} a_x &=& 1\\ a_y&=&-4\\ a_z&=&2 \end{array} \qquad \begin{array}{lcr} b_x &=& -5\\ b_y&=&2\\ b_z&=&7 \end{array} \qquad \begin{array}{lcr} c_x &=& 1\\ c_y &=& 1\\ c_z &=& 1\\ \end{array} }\)

 

Differences of the vectors:
\(\small{ \begin{array}{lcr} \vec{b}-\vec{a} &=& \bigl(\begin{smallmatrix} b_x-a_x\\b_y-a_y\\b_z-a_z \end{smallmatrix}\bigr) = \bigl(\begin{smallmatrix} -6\\6\\5 \end{smallmatrix}\bigr)\\ \vec{a}-\vec{b} &=& -\bigl(\begin{smallmatrix} -6\\6\\5 \end{smallmatrix}\bigr) =\bigl(\begin{smallmatrix} 6\\-6\\-5 \end{smallmatrix}\bigr) \\ \end{array} \qquad \begin{array}{lcr} \vec{c}-\vec{b} &=& \bigl(\begin{smallmatrix} c_x-b_x\\c_y-b_y\\c_z-b_z \end{smallmatrix}\bigr) = \bigl(\begin{smallmatrix} 6\\-1\\-6 \end{smallmatrix}\bigr)\\ \vec{b}-\vec{c} &=& -\bigl(\begin{smallmatrix} 6\\-1\\-6 \end{smallmatrix}\bigr) =\bigl(\begin{smallmatrix} -6\\1\\6 \end{smallmatrix}\bigr) \\ \end{array} \qquad \begin{array}{lcr} \vec{a}-\vec{c} &=& \bigl(\begin{smallmatrix} a_x-c_x\\a_y-c_y\\a_z-c_z \end{smallmatrix}\bigr) = \bigl(\begin{smallmatrix} 0\\-5\\1 \end{smallmatrix}\bigr)\\ \vec{c}-\vec{a} &=& -\bigl(\begin{smallmatrix} 0\\-5\\1 \end{smallmatrix}\bigr) =\bigl(\begin{smallmatrix} 0\\5\\-1 \end{smallmatrix}\bigr) \\ \end{array} }\)

 

In the plane of the triangle (ABC) the angles are:

\(\small{ \begin{array}{rcl} \tan{(A)} &=& \frac{ \vert (\vec{c}-\vec{a}) \times (\vec{b}-\vec{a}) \vert} {(\vec{c}-\vec{a})\cdot (\vec{b}-\vec{a}) } = \frac{ \left| \bigl(\begin{smallmatrix} 0\\5\\-1 \end{smallmatrix}\bigr) \times \bigl(\begin{smallmatrix} -6\\6\\5 \end{smallmatrix}\bigr) \right|} {\bigl(\begin{smallmatrix} 0\\5\\-1 \end{smallmatrix}\bigr)\cdot \bigl(\begin{smallmatrix} -6\\6\\5 \end{smallmatrix}\bigr) } = \frac{ 43.5545634808 } {25 } \qquad (I.)\\ A &=& \arctan{(1.74218253923)}\\ A &=& 60.1444921468^\circ \\ \tan{(B)} &=& \frac{ \vert (\vec{a}-\vec{b}) \times (\vec{c}-\vec{b}) \vert} {(\vec{a}-\vec{b})\cdot (\vec{c}-\vec{b}) } = \frac{ \left| \bigl(\begin{smallmatrix} 6\\-6\\-5 \end{smallmatrix}\bigr) \times \bigl(\begin{smallmatrix} 6\\-1\\-6 \end{smallmatrix}\bigr) \right|} {\bigl(\begin{smallmatrix} 6\\-6\\-5 \end{smallmatrix}\bigr)\cdot \bigl(\begin{smallmatrix} 6\\-1\\-6 \end{smallmatrix}\bigr) } = \frac{ 43.5545634808 } {72 } \qquad (I.)\\ B &=& \arctan{(0.60492449279)}\\ B &=& 31.1707710617^\circ \\ \tan{(C)} &=& \frac{ \vert (\vec{b}-\vec{c}) \times (\vec{a}-\vec{c}) \vert} {(\vec{b}-\vec{c})\cdot (\vec{a}-\vec{c}) } = \frac{ \left| \bigl(\begin{smallmatrix} -6\\1\\6 \end{smallmatrix}\bigr) \times \bigl(\begin{smallmatrix} 0\\-5\\1 \end{smallmatrix}\bigr) \right|} {\bigl(\begin{smallmatrix} -6\\1\\6 \end{smallmatrix}\bigr)\cdot \bigl(\begin{smallmatrix} 0\\-5\\1 \end{smallmatrix}\bigr)} = \frac{ 43.5545634808 } {1 } \qquad (I.)\\ C &=& \arctan{(43.5545634808)}\\ C &=& 88.6847367915^\circ \\ \end{array} }\)

 

\(A+B+C = 60.1444921468^\circ + 31.1707710617^\circ + 88.6847367915^\circ = 180^\circ \)

 

 

laugh

22.01.2016