cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it
\(\small{ \begin{array}{rcll} \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \frac{ \cos{( 2x )} \cdot [ 1-\cos^2{(x)} ] } { \cos^2{(x)} } \qquad &| \qquad \sin^2{(x)} = 1-\cos^2{(x)} \\ &=& \cos{( 2x )} \cdot \left[ \frac{1-\cos^2{(x)}} {\cos^2{(x)}} \right] \\ &=& \cos{( 2x )} \cdot \left[ \frac{1}{\cos^2{(x)}} -1 \right] \\ &=& \frac{\cos{( 2x )} }{\cos^2{(x)}} -\cos{( 2x )} \qquad &| \qquad \cos{( 2x )} = \cos^2{(x)}- \sin^2{(x)}\\ &=& \frac{ \cos^2{(x)}- \sin^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \frac{\sin^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \frac{ 1-\cos^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \left[ \frac{ 1 } {\cos^2{(x)} }-1 \right] -\cos{( 2x )} \\ &=& 2- \frac{ 1 } {\cos^2{(x)} } -\cos{( 2x )} \\ \end{array} }\)
\(\begin{array}{rcll} \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \int 2\ dx -\int \frac{ 1 } {\cos^2{(x)} }\ dx -\int \cos{( 2x )}\ dx \\ \end{array}\)
\(\begin{array}{rcll} \text{1.} \qquad \int 2\ dx &=& 2\int dx \\ \int 2\ dx &=& 2x \end{array}\)
\(\begin{array}{rcll} \text{2.} \qquad \int \frac{ 1 } {\cos^2{(x)} }\ dx &=& \int \frac{ \sin^2{(x)}+\cos^2{(x)} }{\cos^2{(x)}} \ dx \\ &=& \int (\tan^2{(x)} + 1 )\ dx\\ && \boxed{~ \begin{array}{rcll} \text{we need: } y &=& \tan{(x)} \\ y &=& \frac{\sin{(x)}} {\cos{(x)}} \\ y' &=& \frac{\sin{(x)}} {\cos{(x)}} \left[ \frac{\cos{(x)}} {\sin{(x)}} - \frac{-\sin{(x)}}{\cos{(x)}} \right] \\ y' &=& \tan{(x)} \left[ \cot{(x)} + \tan{(x)} \right] \\ y' &=& 1+ \tan^2{(x)} \\ \end{array} ~}\\ &=& \int (\tan^2{(x)} + 1 )\ dx \\ \text{we substitute:} ~ u &=& \tan{(x)}\\ du &=&\left( 1+\tan^2{(x)} \right)\ dx\\ &=& \int (\tan^2{(x)} + 1 ) \frac{du}{1+\tan^2{(x)}} \\ &=& \int du\\ &=& u\\ \int \frac{ 1 } {\cos^2{(x)} }\ dx &=& \tan{(x)}\\ \end{array}\)
\(\begin{array}{rcll} \text{3.} \qquad \int \cos{( 2x )}\ dx \\ \text{we substitute:} ~ u &=& 2x\\ du &=&2\ dx\\ \int \cos{( 2x )}\ dx &=& \int \cos{( u )} \frac{du}{2} \\ &=& \frac12 \cdot \int \cos{( u )} \ du \\ &=& \frac12 \cdot \sin{( u )} \\ &=& \frac12 \cdot \sin{( 2x )} \qquad &| \qquad \sin{( 2x )} = 2\cdot \sin{( 2x )}\cdot \cos{( x )} \\ &=& \frac12 \cdot 2\cdot \sin{( 2x )}\cdot \cos{( x )} \\ \int \cos{( 2x )}\ dx &=& \sin{( x )}\cdot \cos{( x )} \\ \end{array}\)
\(\begin{array}{rcll} \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \int 2\ dx -\int \frac{ 1 } {\cos^2{(x)} }\ dx -\int \cos{( 2x )}\ dx \\\\ \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& 2x - \tan{(x)}-\sin{( x )}\cdot \cos{( x )} + c \end{array}\)