heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #6
avatar+26387 
+40

A broken clock is set corectly at 12:00 noon. However, it registers only 20 minutes for each hour. In how many hours will it again register the correct time  ?

A)12

B)18  analog clock(12h)

C)24 

D)30

E)36  digital clock (12h)

 

1. Analog Clock:

 \(\begin{array}{rcll} \text{angular velocity real time: } \omega_1 &=& \frac{2\pi}{12\ h} \\ \text{angular velocity display time: } \omega_2 &=& \frac{2\pi}{36\ h} \\ w_2\cdot t - w_1\cdot t &=& n\cdot 2\pi \\ \frac{2\pi}{12\ h}\cdot t - \frac{2\pi}{36\ h}\cdot t &=& n\cdot 2\pi \qquad &| \qquad :2\pi \\ \frac{1}{12\ h}\cdot t - \frac{1}{36\ h}\cdot t &=& n \\ t\cdot (\frac{1}{12\ h} - \frac{1}{36\ h} ) &=& n \\ t\cdot ( \frac{36-12}{12\cdot 36} ) &=& n \\ t\cdot ( \frac{24}{12\cdot 36} ) &=& n \\ t\cdot ( \frac{2}{36} ) &=& n \\ t\cdot ( \frac{1}{18} ) &=& n \\ t &=& 18\cdot n \\ \end{array}\)

 

next correct time, if n = 1, then t = 18 hours.

 

2. Digital Clock(24h):

\(\begin{array}{rcll} \text{angular velocity real time: } \omega_1 &=& \frac{2\pi}{24\ h} \\ \text{angular velocity display time: } \omega_2 &=& \frac{2\pi}{72\ h} \\ w_2\cdot t - w_1\cdot t &=& n\cdot 2\pi \\ \frac{2\pi}{24 h}\cdot t - \frac{2\pi}{72\ h}\cdot t &=& n\cdot 2\pi \qquad &| \qquad :2\pi \\ \frac{1}{24\ h}\cdot t - \frac{1}{72\ h}\cdot t &=& n \\ t\cdot (\frac{1}{24\ h} - \frac{1}{72\ h} ) &=& n \\ t\cdot ( \frac{72-24}{24\cdot 72} ) &=& n \\ t\cdot ( \frac{48}{24\cdot 72} ) &=& n \\ t\cdot ( \frac{2}{72} ) &=& n \\ t\cdot ( \frac{1}{36} ) &=& n \\ t &=& 36\cdot n \\ \end{array}\)

 

next correct time, if n = 1, then t = 36 hours.

 

laugh

19.01.2016
 #2
avatar+26387 
+41

cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it

 

\(\small{ \begin{array}{rcll} \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \frac{ \cos{( 2x )} \cdot [ 1-\cos^2{(x)} ] } { \cos^2{(x)} } \qquad &| \qquad \sin^2{(x)} = 1-\cos^2{(x)} \\ &=& \cos{( 2x )} \cdot \left[ \frac{1-\cos^2{(x)}} {\cos^2{(x)}} \right] \\ &=& \cos{( 2x )} \cdot \left[ \frac{1}{\cos^2{(x)}} -1 \right] \\ &=& \frac{\cos{( 2x )} }{\cos^2{(x)}} -\cos{( 2x )} \qquad &| \qquad \cos{( 2x )} = \cos^2{(x)}- \sin^2{(x)}\\ &=& \frac{ \cos^2{(x)}- \sin^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \frac{\sin^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \frac{ 1-\cos^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \left[ \frac{ 1 } {\cos^2{(x)} }-1 \right] -\cos{( 2x )} \\ &=& 2- \frac{ 1 } {\cos^2{(x)} } -\cos{( 2x )} \\ \end{array} }\)

 

\(\begin{array}{rcll} \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \int 2\ dx -\int \frac{ 1 } {\cos^2{(x)} }\ dx -\int \cos{( 2x )}\ dx \\ \end{array}\)

 

\(\begin{array}{rcll} \text{1.} \qquad \int 2\ dx &=& 2\int dx \\ \int 2\ dx &=& 2x \end{array}\)

 

\(\begin{array}{rcll} \text{2.} \qquad \int \frac{ 1 } {\cos^2{(x)} }\ dx &=& \int \frac{ \sin^2{(x)}+\cos^2{(x)} }{\cos^2{(x)}} \ dx \\ &=& \int (\tan^2{(x)} + 1 )\ dx\\ && \boxed{~ \begin{array}{rcll} \text{we need: } y &=& \tan{(x)} \\ y &=& \frac{\sin{(x)}} {\cos{(x)}} \\ y' &=& \frac{\sin{(x)}} {\cos{(x)}} \left[ \frac{\cos{(x)}} {\sin{(x)}} - \frac{-\sin{(x)}}{\cos{(x)}} \right] \\ y' &=& \tan{(x)} \left[ \cot{(x)} + \tan{(x)} \right] \\ y' &=& 1+ \tan^2{(x)} \\ \end{array} ~}\\ &=& \int (\tan^2{(x)} + 1 )\ dx \\ \text{we substitute:} ~ u &=& \tan{(x)}\\ du &=&\left( 1+\tan^2{(x)} \right)\ dx\\ &=& \int (\tan^2{(x)} + 1 ) \frac{du}{1+\tan^2{(x)}} \\ &=& \int du\\ &=& u\\ \int \frac{ 1 } {\cos^2{(x)} }\ dx &=& \tan{(x)}\\ \end{array}\)

 

\(\begin{array}{rcll} \text{3.} \qquad \int \cos{( 2x )}\ dx \\ \text{we substitute:} ~ u &=& 2x\\ du &=&2\ dx\\ \int \cos{( 2x )}\ dx &=& \int \cos{( u )} \frac{du}{2} \\ &=& \frac12 \cdot \int \cos{( u )} \ du \\ &=& \frac12 \cdot \sin{( u )} \\ &=& \frac12 \cdot \sin{( 2x )} \qquad &| \qquad \sin{( 2x )} = 2\cdot \sin{( 2x )}\cdot \cos{( x )} \\ &=& \frac12 \cdot 2\cdot \sin{( 2x )}\cdot \cos{( x )} \\ \int \cos{( 2x )}\ dx &=& \sin{( x )}\cdot \cos{( x )} \\ \end{array}\)

 

\(\begin{array}{rcll} \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \int 2\ dx -\int \frac{ 1 } {\cos^2{(x)} }\ dx -\int \cos{( 2x )}\ dx \\\\ \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& 2x - \tan{(x)}-\sin{( x )}\cdot \cos{( x )} + c \end{array}\)

 

laugh

18.01.2016