Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
679
3
avatar

I cant find the angle between the vertices c (1,1,1) a (1,-4,2) b (-5,2,7) Can you help me?

 Jan 22, 2016

Best Answer 

 #1
avatar+26396 
+10

I cant find the angle between the vertices c (1,1,1) a (1,-4,2) b (-5,2,7) Can you help me?

 

I set:

ax=1ay=4az=2bx=5by=2bz=7cx=1cy=1cz=1

 

Differences of the vectors:
ba=(bxaxbyaybzaz)=(665)ab=(665)=(665)cb=(cxbxcybyczbz)=(616)bc=(616)=(616)ac=(axcxaycyazcz)=(051)ca=(051)=(051)

 

In the plane of the triangle (ABC) the angles are:

tan(A)=|(ca)×(ba)|(ca)(ba)=|(051)×(665)|(051)(665)=43.554563480825(I.)A=arctan(1.74218253923)A=60.1444921468tan(B)=|(ab)×(cb)|(ab)(cb)=|(665)×(616)|(665)(616)=43.554563480872(I.)B=arctan(0.60492449279)B=31.1707710617tan(C)=|(bc)×(ac)|(bc)(ac)=|(616)×(051)|(616)(051)=43.55456348081(I.)C=arctan(43.5545634808)C=88.6847367915

 

A+B+C=60.1444921468+31.1707710617+88.6847367915=180

 

 

laugh

 Jan 22, 2016
 #1
avatar+26396 
+10
Best Answer

I cant find the angle between the vertices c (1,1,1) a (1,-4,2) b (-5,2,7) Can you help me?

 

I set:

ax=1ay=4az=2bx=5by=2bz=7cx=1cy=1cz=1

 

Differences of the vectors:
ba=(bxaxbyaybzaz)=(665)ab=(665)=(665)cb=(cxbxcybyczbz)=(616)bc=(616)=(616)ac=(axcxaycyazcz)=(051)ca=(051)=(051)

 

In the plane of the triangle (ABC) the angles are:

tan(A)=|(ca)×(ba)|(ca)(ba)=|(051)×(665)|(051)(665)=43.554563480825(I.)A=arctan(1.74218253923)A=60.1444921468tan(B)=|(ab)×(cb)|(ab)(cb)=|(665)×(616)|(665)(616)=43.554563480872(I.)B=arctan(0.60492449279)B=31.1707710617tan(C)=|(bc)×(ac)|(bc)(ac)=|(616)×(051)|(616)(051)=43.55456348081(I.)C=arctan(43.5545634808)C=88.6847367915

 

A+B+C=60.1444921468+31.1707710617+88.6847367915=180

 

 

laugh

heureka Jan 22, 2016
 #2
avatar+130466 
+5

Thanks, heureka......here's another method that is vey similar to its 2D counterpart....

 

c (1,1,1) a (1,-4,2) b (-5,2,7)

 

Let vector ca =  < 0, -5, 1>

Let vector cb =  < -6, 1, 6 >

 

Find the length of ca =  sqrt26]

Find the length of cb =sqrt [73]

Find the dot product of both vectors = [0*-6 + -5*1 + 1*6]   = [1]

 

And the measure of angle acb can be found as follows :

 

cos[acb] = dot product of both vectors / [ product of their lengths]   .......so we have

 

cos[acb]  = 1 / sqrt[73*26]

 

cos-1 [ 1/sqrt[73*26]  = acb ≈ 88.684736791499°

 

Similarly 

Let vector ba = < 6,-6,-5>     and its length = sqrt(97)

Let vector bc = < 6, -1, -6>     and it's length = sqrt(73)

And the dot probuct of both vectors = [36 + 6 + 30]  =[72]

 

So

 

cos(abc)  = 72/ sqrt(97*73)

 

cos-1 [ 72/ sqrt(97*73)]  = abc  ≈ 31.17077106171°

 

 

Lastly

 

Let vector ab  = < -6, 6, 5>     and its length = sqrt(97)

Let vector ac = <0, 5, -1>     and it's length  = sqrt(26)

And the dot product of the two vectors = [0 + 30 - 5 ]  = [25]

 

So

 

cos(bac)  = 25 / sqrt(97*26) 

 

cos-1 [ 25 / sqrt(97*26) ] = bac ≈ 60.144492146791°

 

Just as heureka found......

 

 

cool cool cool

 Jan 23, 2016
edited by CPhill  Jan 23, 2016
edited by CPhill  Jan 23, 2016
 #3
avatar+33654 
+5

Yet another approach is simply to use Pythagoras to find the length of each side, then use the cosine rule to find the angles:

 

angles

.

 Jan 23, 2016

2 Online Users